Innovation isn’t convenient. It disrupts. And it takes curiosity, tenacity and wonder. Because innovation asks the tough questions. Here’s to tomorrow, and to all those who make it happen today.
Our team of visionaries and trailblazers has redefined innovation — designing and building advanced memory and semiconductor technologies that transform what’s possible.
With a 2.5 times performance per watt improvement over previous generations, Micron’s HBM3E offering sets record for the critical artificial intelligence (AI) data center metrics of performance, capacity and power efficiency.
Micron's industry-leading 232-layer 3D NAND provides the foundation for a new wave of end-to-end technologic innovation. With this industry first 232-layer advancement, Micron enables the best industry storage density, improved performance and industry-leading I/O speed. This helps unlock new opportunities for digitization, optimization and automation in client, mobile and data center markets.
Micron Technology's leadership is founded on continual innovation in memory, storage, semiconductor technologies and beyond. The milestone of achieving our 50,000th patent is a reflection of the creativity of Micron's global team members over the decades and their dedication to drive innovation forward.
1α (1-alpha) node DRAM products are built using the world’s most advanced DRAM process technology and offer major improvements in bit density, power and performance. The applications for this new DRAM technology are extensive and far reaching — enhancing performance in everything from mobile devices to smart vehicles.
GDDR6X is the world’s fastest discrete graphics memory solution, which is the first to power system bandwidth up to 1 terabyte per second (TB/s). The multilevel signaling innovation in GDDR6X has shattered conventional bandwidth limits, clocking record-breaking speeds while accelerating performance on complex graphics workloads across next-generation gaming applications.
The world’s first 176-layer 3D NAND flash memory achieves unprecedented, industry-pioneering density and performance. Together, Micron’s new 176-layer technology and advanced architecture represent a radical breakthrough, enabling immense gains in application performance across a range of storage use cases spanning data center, intelligent edge and mobile devices.
Micron began shipments of the industry’s first SSD built on revolutionary quad-level cell (QLC) NAND technology. The Micron® 5210 ION SSD provides 33 percent more bit density than triple-level cell (TLC) NAND, addressing segments previously services with hard disk drives (HDDs).
Micron® Authenta™ Technology helps enable strong cryptographic IoT device identity and health management in flash memory, providing a unique level of protection for the lowest layers of IoT device software, starting with the boot process.
Micron increased the density of its DDR4 NVDIMMs to 32GB, doubling the capacity of previous solutions. NVDIMMs, also known as persistent memory, can permanently store data in DRAM even after a power loss. The Micron 32GB NVDIMM-N module provides both high-capacity and very fast throughput.
This memory’s record-high, per-pin data rate enables massive graphics performance and GPGPU computation capability. GDDR5X offers up to 14Gb/s data rates, essentially doubling the bandwidth of prior GDDR5 memory.
The creation of the Xcella™ industry consortium helped to accelerate adoption of the Xccela Bus Interface, a new type of high-performance digital interconnect suitable for both volatile and non-volatile memories.
3D NAND marks a significant inflection point in the future of semiconductors. By stacking layers of data storage cells vertically, 3D NAND delivers three times higher capacity than planar NAND technology.
3D XPoint represents the first new memory category in decades. This non-volatile memory is up to 1,000 times faster and has up to 1,000 times greater endurance than NAND.
This single component provided a significant density increase to 1 gigabyte on a single chip. This higher density enables cost-effective, high-capacity solutions optimized to support large-scale, data-intensive workloads.
Micron’s 16nm process technology delivered 16GB of storage on a single die, the highest-density planar NAND flash memory ever developed. Using this process, a single 300mm wafer can create nearly 6TB of storage.
This solution combined a high-performance PCI Express interface with a hot-swappable 2.5-inch form factor and custom Micron controller, creating new options for enterprise performance scalability and serviceability.
DDR3L-RS memory established a new category of “reduced-power” DRAM solutions,
enabling longer battery life for a new generation of high-performance, ultrathin devices like
laptops, tablets, and Ultrabook systems.
*Ultrabook is a trademark of Intel Corporation or its
subsidiaries in the U.S. and/or other countries.
This 128Gb MLC memory could store 1Tb of data in a single fingertip-size package with just eight die, setting a new storage benchmark. Additionally, this memory was the first to use an innovative planar cell structure that overcame the scaling constraints of standard floating-gate NAND.
Hybrid Memory Cube (HMC) is a revolutionary DRAM architecture that combines high-speed logic with a stack of memory die using through-silicon via (TSV) technology. Learnings from HMC continue to be applied towards future, emerging memory technologies.
At the time of launch, the C300 was the industry’s fastest SSD for notebook and desktop PCs. With support for the SATA III interface, this SSD delivered 6 Gb/s which significantly boosted throughput speeds for data transfers, application loads and boot times.
Pitch-doubling was introduced as a lithography technique for increasing bit density without a lithography change. This method involved the separation of bit lines into first and second metal layers, allowing Micron to deliver a 16Gb MLC device on existing 50nm technology.
Originally designed for networking, this high-performance DRAM quickly became the solution of choice for an unexpected application: DLP-based TVs and projectors. While density has increased over time, reduced latency DRAM remains a staple in networking applications today.
This multi-level cell (MLC) NAND flash device was the industry’s first monolithic 32Gb NAND, which enabled high-density solid state storage in very small form factor devices, including digital cameras, personal music players and digital camcorders.
This internally-developed tester is used exclusively by Micron to increase DRAM test throughput and accuracy. Micron continues to evolve this tester platform to meet new and future memory standards.
Micron’s 16GB DDR2 module served the fast-growing server memory footprint of the 2000s as the rise of virtualization technology packed multiple applications onto single servers. These high-density server modules are a trend that continues today.
Micron’s 16MB DRAM — built on a tiny 33mm2 die — enabled higher capacity and lower power in a small footprint. As cell phones transitioned from simple voice to multimedia, LPDRAM requirements increased dramatically, a trend that continues in smartphones today.
Pseudo-Static SRAM (PSRAM) delivered the high bandwidth, capacity and low power necessary to replace SRAM in mobile devices. Micron’s leadership in PSRAM paved the way for future low-power DRAM products that are used in mobile devices today.
Micron developed an entirely new 6F2 cell architecture to replace the industry’s 8F2 cell standard, enabling approximately 25% more bits per wafer. This higher-density design enabled Micron to reclaim the title as the industry’s most cost-competitive memory producer.
Micron’s entry into image sensors established the company as an innovator capable of making CMOS technology with image quality rivaling charge coupled device (CCD) sensors. Today, CMOS sensors are the standard in digital cameras of all types, from smartphones to high-end professional gear.
Micron’s 1Gb DDR was built on the most advanced process technology in the world (110nm), outpacing semiconductor giants Intel and AMD who were still on 130nm. This chip established Micron as the memory industry leader in both density and interface performance.
Micron’s innovative quad data rate (QDR) architecture effectively doubled the SRAM bandwidth for communication applications such as switches and routers. This unique design used two ports to independently run at a double data rate, resulting in four data items per clock cycle.
Micron’s demonstration of the Samurai double data rate (DDR) chipset proved that DDR memory could deliver performance equivalent to the competing Direct RDRAM solution, but at a much lower cost. Ultimately, DDR would become the undisputed industry-standard interface for high-performance DRAM.
A milestone in density, the 16-megabit DRAM replaced Micron's mainstay 4-megabit DRAM lineup. These higher capacity chips coincided with Microsoft’s release of Windows 3.1, which drove minimum PC RAM requirements to 1 megabyte.
The introductions of 256K video RAM and fast static RAM broadened Micron’s product portfolio beyond traditional DRAM, enabling Micron to become a player in differentiated memory types.
A milestone in density, the 1Mb DRAM became a staple for main memory in PCs and graphics cards during the late 1980s and 1990s. Micron’s 1Mb DRAM enabled high-capacity SIMM modules that supported PCs equipped with Microsoft’s new Windows OS.
In addition to being introduced as the world’s smallest 256K DRAM die, this chip also represented an industry milestone in DRAM density. By using bigger and easier-to-read memory cells, the 256K DRAM was a springboard to future efficiency and profitability for the young memory startup.
Micron’s 64K DRAM was the first product manufactured at the company’s newly completed fabrication facility in Boise, Idaho. Micron sold its 64K DRAM into many of the first mass-produced personal computers, including the Commodore 64 home computer.
While not the first company to make 64K DRAM, Micron’s engineers created a newer, smaller version that was lauded as the smallest 64K DRAM design in the world. This innovative design led to high-volume manufacturing of the company’s first 64K product in 1981.
Micron started as a four-person semiconductor design company in the basement of a Boise, Idaho dental office. Micron’s first contract was for the design of a 64K memory chip for Mostek Corporation.
For over 45 years, our innovations have been instrumental to the world’s most significant technology advancements and market transitions.
DDR5, the most technologically advanced DRAM to date, will enable the next generation of server workloads by delivering more than an 85% increase in memory performance.