Technical Note

Uprating Semiconductors for High-Temperature Applications

Introduction

Uprating is used to evaluate a part's ability to function and perform when it is used outside of the manufacturer's specified temperature range. For example, the maximum junction temperature of Micron's DDR SDRAM is 95°C. Before including a DDR SDRAM in an application operating above that temperature, a customer would use the process of uprating to determine the related risks. Uprating is possible because semiconductor manufacturers design significant margin into their products to increase device yield and reliability.

This technical note describes the issues associated with temperature uprating and the risks involved in using components outside the manufacturers' environmental specifications. Through its commercial off-the-shelf (COTS) program, the U.S. Department of Defense has been uprating for a number of years. There are three major concerns with this practice:

1. Device functionality and performance—including AC and DC timings, refresh, and speed of the part
2. Device reliability, or the reliability of the thin-film MOS device
3. Package reliability, including concerns with wire bonds and solder joints

This note focuses specifically on temperature uprating and the significant failure mechanisms associated with operating semiconductors outside their specified temperature ranges. The failure mechanisms apply to all MOS and bipolar semiconductor products, whether manufactured by Micron or any other semiconductor company.

Device Functionality

Micron semiconductor devices go through a series of functional tests under elevated temperatures to ensure device performance. The junction temperature specifications listed in Table 1 on page 2 are derived directly from these tests. Table 2 shows the industry-standard temperature definitions for CMOS-based devices. If these temperatures are exceeded, the data sheet specifications for speed, refresh, and timings cannot be guaranteed. As with all semiconductor devices, increasing temperatures adversely affects device functionality, quality, and reliability. Even though all Micron devices have significant margin designed and tested in, Micron cannot guarantee the data sheet specified performance of any device pushed past its tested limits.
Table 1: Junction Temperature, Functionality

<table>
<thead>
<tr>
<th>Device</th>
<th>Application</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM, SDRAM, DDR SDRAM</td>
<td>Commercial</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>-40</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Automotive¹</td>
<td>-40</td>
<td>110</td>
</tr>
<tr>
<td>Mobile SDRAM, Mobile DDR SDRAM, Mobile DDR2 SDRAM</td>
<td>Commercial</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>-40</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Automotive¹</td>
<td>-40</td>
<td>110</td>
</tr>
<tr>
<td>MCP/AIO</td>
<td>Commercial</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>-40</td>
<td>90</td>
</tr>
<tr>
<td>e-MMC™</td>
<td>Wireless</td>
<td>-30</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>-40</td>
<td>90</td>
</tr>
<tr>
<td>Flash</td>
<td>Commercial</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
<td>-30</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>-40</td>
<td>90</td>
</tr>
<tr>
<td>DDR2 SDRAM</td>
<td>Commercial²</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Industrial²</td>
<td>-40</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Automotive²</td>
<td>-40</td>
<td>110</td>
</tr>
<tr>
<td>DDR3 SDRAM</td>
<td>Commercial²</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Industrial²</td>
<td>-40</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Automotive²</td>
<td>-40</td>
<td>110</td>
</tr>
<tr>
<td>PSRAM</td>
<td>Wireless¹</td>
<td>-30</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Industrial¹</td>
<td>-40</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Automotive¹</td>
<td>-40</td>
<td>110</td>
</tr>
<tr>
<td>RLDRAM®</td>
<td>Commercial</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>-40</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes:
1. Refresh rate is device dependant, refer to data sheets.
2. Requires 32ms refresh to operate above 90°C.

Table 2: Industry-Standard Typical Junction Temperature Limits

<table>
<thead>
<tr>
<th>Application</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Commercial</td>
<td>0</td>
</tr>
<tr>
<td>Industrial</td>
<td>-40</td>
</tr>
<tr>
<td>Automotive</td>
<td>-40</td>
</tr>
<tr>
<td>Grade 2</td>
<td>-40</td>
</tr>
<tr>
<td>Grade 1</td>
<td>-65</td>
</tr>
<tr>
<td>Military</td>
<td></td>
</tr>
<tr>
<td>(example of one range)</td>
<td></td>
</tr>
</tbody>
</table>
Device Reliability

When determining the risk associated with operating at extended temperatures, a few factors must be considered:

- What is the real reliability target of the end system?
- What is the useful life of the end system? (For example, if the end system is a GPS navigation system for a car, how long does the unit need to last?)
- How many hours a day will the unit be powered throughout its life?

If you assume 2 hours of use a day across a 20-year life, the DRAM only has to last 14,560 hours, or about 1.7 years of continuous use assuming only 1 DRAM per system. The values determined in the failure in time per billion device hours (FIT) rate calculations only apply when there is power to the device. In most cases, the functional life of the end system is far shorter than that of the DRAM, primarily because the reliability standards that govern the DRAM industry are based on applications that use 32 or more devices per system, such as servers. The number of devices in the system and their effects on reliability are detailed in “Failure Rate Calculation” on page 5.

Figure 1: Reliability Curve

The long-term reliability and failure rates for CMOS devices is typically described in the form of a curve depicting the life of the IC. This reliability curve is known as a bathtub curve due to its shape (see Figure 1). The curve shows the failure rate of a population of ICs over time. A small percentage of devices will have inherent manufacturing defects after the devices have passed all electrical testing and are functional at time = 0. Manufacturing defects caused by contamination and process variation lead to a shorter life in comparison to the remaining population. These defects are referred to as “infant mortality.” Infant mortality makes up only a small percentage of the total population, but is the largest percentage of early life failures in ICs.

DRAM devices are subjected to 125°C at elevated voltages (burn-in) to remove the infant mortality part of the population prior to shipping. After the devices in the infant mortality section of the bathtub curve are removed from the population, the remaining part of the population displays a stable field failure rate. Micron uses an intelligent burn-in—the parts are operated during the stress condition to show the exact time of failure. Following the infant mortality section, there is a relatively flat portion of the bathtub curve that represents the useful life of the IC, where you would expect to see a very low field failure rate. The random field failures experienced during the useful life of the IC will eventually be replaced with an exponential failure rate. This is shown in the wear out section of the bathtub curve. The time frame and random field failures in the useful life of the IC can be predicted using statistics based on lab data from a sample of parts and will vary greatly depending on the operating temperature the IC. This process is explained in detail in the following pages.
Long-Term Reliability

Statistically predicting the long-term reliability of a DRAM requires test conditions that accelerate the stress on the device to screen out those with defects, while at the same time not damaging the remaining portion of the population. Both temperature and voltage are used as acceleration factors during testing. Accelerated temperature and voltages are not set to a point that would damage the device, thereby causing a failure that would not occur under normal operating conditions. During high temperature operating life testing, the devices are subjected to 125°C at an internal voltage of VCC + 0.4V. Afterward, extrapolation from accelerated conditions to nominal conditions is possible.

Temperature Acceleration Factor

The Arrhenius equation, shown in Equation 1, is used to statistically predict and model the acceleration factor due to temperature.

\[
AF_T = e^\left(\frac{E_A}{k} \left(\frac{1}{T_O} - \frac{1}{T_S} \right) \right)
\]

Arrhenius Equation (EQ 1)

- \(k \) = Boltzmann's constant = 8.617 × 10^{-5} eV/K
- \(T_O \) = Operating temperature in kelvins
- \(T_S \) = Stress temperature in kelvins
- \(E_A \) = Activation energy for respective failure mechanism

The stress temperature (\(T_S \)) used to collect data is 125°C. \(T_O \) is the normalized operating temperature. All temperature data is converted into degrees kelvin. Boltzmann's constant, illustrated as \(k \) in the Arrhenius equation, is equal to 8.617 × 10^{-5} eV/K. The activation energy (\(E_A \)), expressed in electron volts (eV), is a function of the temperature dependence on the failure mechanism. The lower the \(E_A \), the less influence the temperature has on the failure mechanism. \(E_A \) is derived through experimental stress data collected at burn-in over time that is common among all semiconductor devices. In the case of DRAM, the most relevant activation energy is due to the time dependent dielectric breakdown (TDDB). When \(T_O \) is equal to \(T_S \), the acceleration factor due to temperature is equal to 1. As seen by the Arrhenius equation, temperature has an exponential effect on the long-term reliability of all CMOS-based ICs.
Voltage Acceleration Factor

The second acceleration factor used in long-term reliability testing is voltage. The voltage acceleration factor is shown in Equation 2. Voltage stress is independent of the operating voltage specified in the data sheet in most cases. Most DRAM devices internally regulate the voltage down to an internal operating voltage, \(V_{CC} \), of the given process. During the high-temperature operating life test and burn-in, the regulators are disabled with the voltage moved to \(V_{CC} + 0.4V \) as a stress voltage. The constant \(\beta \) is determined experimentally in relation to TDDB, representing the slope in relation to the time between a failure versus the stress voltage. \(\beta \) is primarily dependent on the thickness of the gate oxide used in the manufacturing process. As shown by this model, voltage is also exponentially related to the reliability of CMOS devices.

\[
AF_V = e^{\beta(V_s - V_o)}
\]
\[
\beta = \text{Constant, the value is derived experimentally}
\]
\[
V_s = \text{Stress voltage}
\]
\[
V_o = \text{Operating voltage}
\]

Overall Acceleration Factor

The overall acceleration factor \((AF_{OA}) \) is calculated as the product of the two respective acceleration factors (temperature and voltage). The \(AF_{OA} \) shows the relationship from the stress conditions using unregulated voltages to nominal conditions as seen in the system. \(AF_{OA} \) is shown in Equation 3.

\[
AF_{OA} = AF_V \times AF_T
\]
\[
\text{Overall Acceleration Factor}
\]

Failure Rate Calculation

The failure rate of an IC can be expressed in many different ways, but once you have the data, it is not difficult to convert the data into the desired format. Assuming that failures occur as random independent events, component failure rates can be calculated using Equation 4. The three components used to predict the final failure rate are Poisson statistic, device hours tested, and the number of failures in the sample size being tested.

\[
\text{Failure rate} = \frac{P_n}{\text{Device hours at accelerated environment} \times AF_{OA} \text{ relative to typical system operating conditions}}
\]
\[
\text{Failure Rate Calculation}
\]
Temperature Uprating on Semiconductors
Failure Rate Calculation

equals the Poisson statistic. The P_n value can then be determined by dropping a vertical line down from the intersection. The confidence levels of 60% and 90% are shown based on zero fails in the sample size. Table 3 on page 7 is provided to show the Poisson statistic based on the number of fails vs. the confidence levels set at 60% and 90% from 0 to 5 failures. Micron uses a 60% confidence level for all failure rate calculations published for DRAM devices. If a higher level of confidence is needed, recalculating this can be done using a different P_n to represent the desired confidence level.

$$P_r = \sum_{i = 0}^{r} \frac{(e^{-PnP_n r})(i!)}{}$$

Poisson Probability Distribution Equation (EQ 5)

P_r = One minus the confidence level at which the failure rate is calculated
r = The total number of failed devices from our test samples

Figure 2: Poisson Curves

Notes: 1. C = Acceptable number of failures in the sample.
Applying the Reliability Data to System Use Conditions

With the reliability statistics laid out in the previous pages, predicting the system FIT rate at a given confidence level is relatively straightforward. FIT can be calculated by replacing the T_o value in the temperature acceleration factor with the sustained operating temperature of the system along with the number of devices. Deriving the mean time between failure (MTBF) from the system FIT can be done using Equation 6, where n is the number of components in the system. The units for MTBF calculation are hours of use.

$$MTBF = \frac{1}{n \times FITs \times 10^{-9}}$$

Mean Time Between Failure \(\text{(EQ 6)}\)
System FIT Rate Example

Equation 7 is an example of the system FIT rate for a 256Mb SDRAM device for an application running at 105°C.

\[
AF_T = e^\left(-\frac{0.6}{8.617 \times 10^{-5} \times \left(\frac{1}{378} - \frac{1}{398} \right)} \right) = 2.524
\]

\[
AF_V = e^{5(2.7 - 2.3)} = 7.389
\]

\[
AF_{OV} = 7.389 \times 2.524 = 18.650
\]

System FIT Rate for a 256Mb SDRAM (EQ 7)

\[
k = \text{Boltzmann’s constant} = 8.617 \times 10^{-5} \text{eV/K}
\]

\[
T_O = \text{Operating temperature in kelvins}
\]

\[
T_S = \text{Stress temperature in kelvins}
\]

\[
E_A = \text{Activation energy for respective failure mechanism}
\]

\[
\beta = \text{Constant, the value is derived experimentally}
\]

\[
V_S = \text{Stress voltage}
\]

\[
V_O = \text{Operating voltage}
\]

Table 4 illustrates the high-temperature operating life data collected for the 256Mb SDRAM device. This data is necessary when calculating the total hours tested and the number of failures in the sample size.

Table 4: 256Mb SDRAM Example Test Data

<table>
<thead>
<tr>
<th>Sample #</th>
<th>168 Hours</th>
<th>336 Hours</th>
<th>504 Hours</th>
<th>672 Hours</th>
<th>840 Hours</th>
<th>1,008 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/498</td>
<td>0/498</td>
<td>0/498</td>
<td>0/200</td>
<td>0/200</td>
<td>0/200</td>
</tr>
<tr>
<td>2</td>
<td>0/499</td>
<td>0/499</td>
<td>1/499</td>
<td>0/200</td>
<td>0/200</td>
<td>0/200</td>
</tr>
<tr>
<td>3</td>
<td>0/499</td>
<td>0/499</td>
<td>0/499</td>
<td>0/200</td>
<td>0/200</td>
<td>0/200</td>
</tr>
<tr>
<td>Total</td>
<td>0/1496</td>
<td>0/1496</td>
<td>1/1496</td>
<td>0/0600</td>
<td>0/0600</td>
<td>0/0600</td>
</tr>
</tbody>
</table>

Failure Analysis Summary

<table>
<thead>
<tr>
<th>Interval</th>
<th>Sample #</th>
<th>No. of Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>504 hours</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The device hours is a simple calculation of the number of devices multiplied by the total number of hours tested, measured in hours.

Device hours = (1,496 - 168) + (1,496 - 168) + (1,496 - 168) + (600 - 168) + (600 - 168) + (600 - 168) = 1,056,384 or 1.056 × 10^6

The Poisson statistic is calculated using a single fail in the sample size at a 60% confidence level, as seen in Equation 8.

\[
0.4 = \sum_{i=0}^{P(n)} \left(e^{-Pn} \frac{Pn^i}{i!} \right)
\]

\[
P(n) = 2.022
\]

Poisson Statistic Calculated at a 60% Confidence Level (EQ 8)
The final failure rate and FIT can now be calculated for the operating temperature of 105°C:

\[
FR = \frac{2.022}{1.056 \times 10^6 \times 18.650}
\]

\[
FR = 1.027 \times 10^{-7}
\]

\[
FR = 1.027 \times 10^{-7} \times 1.0 \times 10^9 = 102
\]

Final Failure and FIT Rates (EQ 9)

\[
FR = \text{failure rate}
\]

With the FIT rate calculated, the MTBF can be calculated. In Equation 10, we are assuming one device in the system. See Figure 3.

\[
MTBF = \frac{1}{1 \times 102 \times 10^{-9}}
\]

\[
MTBF \approx 9.8 \text{ million hours}
\]

\[
MTBF \approx 1,100 \text{ years}
\]

Mean Time Between Failure Calculation (EQ 10)

Figure 3: Example of Memory System Mean Time Between Failure for Micron Multiple 256Mb SDRAM Components

![Figure 3: Example of Memory System Mean Time Between Failure for Micron Multiple 256Mb SDRAM Components](image-url)
Package Reliability

Package reliability is generally not a concern at constant operating temperatures below 125°C. However, reliability predictions can be made if conditions in the use environment are known and acceleration factors are calculated. Data provided by Micron in device qualification reports or acquired by applying knowledge of expected failure mechanisms in the use environment can be used to calculate the acceleration factors.

The Hallberg-Peck acceleration model is commonly used for temperature and humidity stress:

\[
AF = \left(\frac{RH_s}{RH_o} \right)^3 e^{\left(\frac{E_A}{k} \times \left(\frac{1}{T_o} - \frac{1}{T_s} \right) \right)}
\]

Hallberg-Peck (EQ 11)

Where:
- \(E_A\) = Activation energy of defect mechanism (0.9 commonly used)
- Boltzmann’s constant \((k) = 8.6174 \times 10^{-5} \text{ eV/K}\)
- \(RH_s\) = Stress test environment relative humidity
- \(RH_o\) = Operating use environment relative humidity
- \(T_s\) = Stress test environment temperature
- \(T_o\) = Operating use environment temperature

Two common acceleration models are used to calculate thermal cycling stress:

\[
AF = \left(\frac{\Delta T_s}{\Delta T_o} \right)^m
\]

Coffin-Manson (EQ 12)

\[
AF = \left(\frac{\Delta T_s}{\Delta T_o} \right)^{1.9} \times \left(\frac{F_o}{F_s} \right)^{1/3} \times e^{\left[0.01 \times (T_s - T_o) \right]}
\]

Modified Coffin-Manson (SnPb solder joints) (EQ 13)

Where:
- \(m\) = Exponent dependent on defect mechanism and material
- \(\Delta T_s\) = Stress test thermal cycle temperature change
- \(\Delta T_o\) = Operating use thermal cycle temperature change
- \(F_o\) = Operating use thermal cycling frequency
- \(F_s\) = Stress test thermal cycling frequency
- \(T_s\) = Maximum temperature during stress test thermal cycle
- \(T_o\) = Maximum temperature during operating use thermal cycle

Summary

When exceeding the specified device temperature limits, the customer faces three concerns. First, the functionality and performance of the device must be considered, and the system design must be adjusted accordingly. Second, device reliability is reduced, which can be calculated using the proper reliability equations. Finally, temperatures below +125°C are not a concern for package reliability, but temperature cycling can be a concern and should be avoided.
Uprating can be performed on many levels. The military, for instance, through its COTS program, buys commercially-rated semiconductors and re-evaluates device suitability for its temperature-rated applications. This can be accomplished using a variety of methods, including common practices of parameter conformance, parameter recharacterization, stress balancing, and higher assembly level testing. However, these processes are very expensive and add to the cost of the components.

At the other extreme, the user could simply take commercially rated devices, assess their critical function parameters and decreased reliability, and simply design the system around these issues.

Many semiconductor manufacturers design significant margin into their products. However, semiconductor manufacturers who provide products for multiple temperature specification ranges, as Micron does, generally do not have different device fabrication processes based on the expected temperature range of the application. For example, commercial and industrial devices are generally from the same fabrication process and, therefore, have equivalent intrinsic device reliability. The primary difference is that the industrial devices have been screened for data sheet functionality at the necessary temperature extremes.

Before products are uprated, a thorough understanding of the thermal environment is needed. Uprating can be an expensive process. If devices are never subjected to extended temperatures, there is probably no reason to add the costs associated with uprating, even if the system has been specified to extended temperatures. For details on thermal measurements, see Micron's Thermal Application Technical Note, TN-00-08.
References

Book References

Paper References

Micron References

23. 256Mb Qualification Document.
Revision History

Rev. F5/10
 • Updated Table 1, “Junction Temperature, Functionality,” on page 2.

Rev. E5/08
 • Updated Table 1, “Junction Temperature, Functionality,” on page 2.

Rev. D ... 1/07
 • Updated Table 1, “Junction Temperature, Functionality,” on page 2.
 • Edited for readability.
 • Corrected Table 2, “Industry-Standard Typical Junction Temperature Limits,” on page 2, Under the hood temperature to -40-150.

Rev. C ... 11/06
 • Updated “Device Reliability” section
 • Added “Long-Term Reliability”, “Temperature Acceleration Factor”, “Overall Acceleration Factor”, “Failure Rate Calculation”, and “Applying the Reliability Data to System Use Conditions” sections

Rev. B ... 11/05
 • Updated template
 • Corrected typos: Equation 2 on page 2, TN-00-08 reference on page 10, and Boltzmann’s constant from 8.6171 to 8.6174 on page 10

Rev. A ... 10/04
 • Initial release