Parts of a Computer

Preparation

<table>
<thead>
<tr>
<th>Grade Level: 4–9</th>
<th>Group Size: 20–30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time: 75–90 Minutes</td>
<td>Presenters: 1–3</td>
</tr>
</tbody>
</table>

Objectives

This lesson will enable students to:

- Identify parts of a computer
- Categorize parts of a computer by function: input, output, process, and storage
- Explain how the parts work together
- Compare and contrast the differences between human and computer parts that perform input, output, process, and storage functions

Standards

This lesson aligns with the following National Science Content Standards

- Science and Technology, grades 5–8
- Science in Personal and Social Perspectives, grades 5–8
- History and Nature of Science, grades 5–8

Materials

- Computer Parts
- Pencils
- Two black markers
- Stopwatch
- Tape of sounds or music
- Computers with Internet access
- Paper
- Computer chips
- Floppy disks
- Game cards
 - Red – numbered 2 through 9
 - Blue – marked with x and +
 - Yellow – enough for each repeat of activity
- “Parts of a Computer” PowerPoint presentation (www.micron.com/k12/resources.aspx)
- “Parts of the Computer” handout (Appendix A)
- “Digital Information” handout (Appendix B)
- “ASCII Table” handout (Appendix C)
- “Write Your Name” handout (Appendix D)
- “Human Computer Game Rules” handout (Appendix E)
- “Human Computer Game Script” handout (Appendix F)
- “Storage Capacity Equivalents” handout (Appendix G)
- “Summary Exercise” worksheet (Appendix H)
- PC Challenge CDs – request copies at: http://www.micron.com/support/email/k12/activity
- Computers for PC Challenge
- “Assemble the Computer Challenge” (Appendix I)
- Scrap computer

Grade Level: 4–9 Group Size: 20–30

Time: 75–90 Minutes Presenters: 1–3
Preparation

If possible, the classroom teacher should be given background information about Micron, so that the students can be introduced to the company prior to the presentation. Supplying the teacher with the Micron Web site and printed literature on the company a week before the presentation will allow time for this to take place.

If the PC Challenge will be used, reserve a computer lab for the number of students in the class.

Review the “Assemble the Computer Challenge” Appendix I to determine if it is appropriate for the class and the lesson.

Set up stations with appropriate computer parts: input, process, output, and storage.

Introduction

Use the “Parts of the Computer” PowerPoint presentation to introduce the lesson. Find it on the K–12 Resource page: www.micron.com/k12/resources.aspx.

Distribute chips.

At Micron, we make memory chips. Although memory is crucial to the workings of a computer, there are other parts to a computer besides the semiconductors we make. Look at your chips. The mere size in relation to the actual machine you call a computer shows that there are many parts of a computer that must work together to make your PC work.

Q: How has technology affected your life?
A: Possible answers are:

- Planes
- Cars
- Televisions
- Game consoles
- Cell phones
- Digital cameras
Q: How have computers affected your life?
A: Possible ways:
- Writing papers
- Playing computer games
- Searching the Internet

Today we'll be studying the four functions of a computer. These functions work together, courtesy of a motherboard, which connects them.

The motherboard contains the CPU and other parts like ports, expansion slots, and memory chips that control functions like video and networking.

Point to each part while displaying the “Parts of a Computer” poster (Appendix A). Have students identify the parts in the computer they are examining.

These parts allow you to play a game or listen to a CD or even type a letter or paper via expansion slots called PCI (in new computers), ISA (only in old computers), and AGP (for video cards in new computers). The IDE slots are where the hard drive and the CD–ROM hook in for power on the motherboard.

The main power source is also plugged in on the motherboard. The floppy drive hooks into the motherboard via a different slot that is located next to the IDE slots. These individual slots, ports, and chips on the motherboard allow for input, storage, processing, and output to occur.

Now that we’ve examined the motherboard, let’s look at how the four functions use different parts of the computer to perform tasks.

We’re going to divide the class into four groups to go through the processes of a computer by discussing the parts of a computer and how they relate to these four functions: input, process, output, and storage.

Direct the students to the activity stations and rotate groups through them. Storage and Output can be combined into one station if necessary. A single presenter can take the entire class of students through the activities chronologically.
Input

Information must somehow get into the computer and then the information must be translated into digital form. Input comes from various devices, such as the keyboard, mouse, scanner, microphone, camera, and graphic tablet.

Allow students to handle the input computer parts.

Texts, graphics, sounds, video, music, are all transformed into binary code. Letters, words, numbers, even colors all use the universal ASCII language.

To understand input, we are going to experiment with the binary code and ASCII. A computer speaks in zeros and ones. Every letter that a person types on a keyboard is translated into zeros and ones and then forms the letter that you see. Even spaces in a sentence have a binary code of 00100000.

The zeros and ones stand for electrical pulses with one being a positive charge and zero being no charge at all. The transistors are what allow the charges to flow, like an on/off switch. Each letter is a mix of charges and no charges. Each zero or one is a bit, and 8 bits make up a single byte. A byte is a single letter, number, symbol, or sound. This code system is called ASCII.

Write ASCII on the board, so they realize it is an acronym. Show the “Digital Information” poster (Appendix B).

You are going to write your name in binary code. *Give the students a copy of the “ASCII Table” and “Writing Your Name” handouts (Appendices C and D).*

Using the ASCII table, locate the letters of your name. It’s important to note that capital letters have a different code than lower-case letters.
Process

The computer needs to process what it has received so that it may become output. The CPU, or central processing unit, is the main processing unit of a computer or information-processing device. It coordinates all of the actions of the machine like carrying out instructions, performing calculations, and interacting with all the components used to operate the computer.

The microprocessor is the primary work area where information is processed. Software — the games and programs on your computer — are the sets of instructions that you give to the processor.

More importantly, the microprocessor handles the fetch, decode, and execute steps of the computer system. To understand the efficiency of a computer’s processing system, you will become the parts of the computer and perform these three functions.

Distribute copies of the “Game Rules” and “Game Script” handouts (Appendices E and F).

We are going to walk through the sequence that takes place in the computer when you give it a command. We will begin by identifying the various functions on the chalkboard. Each of you will be simulating the function of one part of the computer. *Have students stand under identifier on chalkboard. See example below.*

![Chalkboard diagram](image)

We now have our Human Computer. We will be using it to perform a math function. Follow along as we demonstrate.

I will place the **RED** numbered cards and the **BLUE** function cards in front of the user; the **YELLOW** cards and one marker in front of the CPU; the printer paper and one marker in front of the printer.

Go over the rules so that the students understand what is allowed. Walk the group through the activity sequence as they perform their roles.

One of the most important aspects of a computer is its speed. Now we’re going to time the group to see how fast you can perform the function. *Record each group’s time on the board to compare with other groups as they complete the activity.*
Storage

Computers have two types of storage: temporary and long-term storage.

Show students the different storage parts and where they are in a computer. Allow students to handle storage computer parts.

- **Hard drives, CD-ROMs, floppy disks, and Flash drives** are examples of long-term storage devices that keep information whether the computer is on or off.
- **ROM or Read Only Memory** holds important information that the computer needs each time it runs.
- **RAM or Random Access Memory** is a type of temporary storage that stores information as you use it. It is constantly being erased and rewritten as you open and close files.

Micron strives to increase the amount of memory available on a semiconductor.

To understand the storage capacity of various devices, we will use this poster to compare the storage capacity of various elements.

Review the storage capacity using the “Storage Capacity” poster (Appendix G).

Output

After the input, processing and storage, the computer is finally ready to display the information that it has been processing. A computer outputs information by using tools like a monitor, printer, and speakers. The user needs to be able to retrieve the information or the result of the instructions given the computer.

Allow students to handle output computer parts.

To demonstrate this activity, you are going to see what is produced when something is input into you via your ears and the output displayed via your hands. As you listen to this tape, let your hand draw whatever you think of while the music or sounds are playing.
Pass out the paper and pencils and start the tape. After the tape has played for a few minutes, ask the students to stop their activity and share aloud what associations they made with the music.

You have just performed the four functions of a computer!

Conclusion

Refer to PowerPoint presentation for conclusion.

A computer is an information-processing machine. A human being is also an information-processing entity.

Looking back on the information you’ve been presented with today, fill out the following form to see how the elements of a computer relate to the thought process of a person without using the example offered during the “Output” exercise.

Summary Activity

Pass out the “Summary Activity” handout (Appendix H) to each student. Review the instructions. Give them a couple of minutes to complete the activity, and then review it with them.

Think of both a computer and a person as information processing machines. Identify the four components of an information-processing devise for both and complete the following table.

<table>
<thead>
<tr>
<th></th>
<th>COMPUTER</th>
<th>PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input done with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage done with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>done by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output done with</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PC Challenge

Distribute CDs for students to play PC Challenge (request copies from Micron Technology, Inc. K–12 Programs at: http://www.micron.com/support/email/k12/activity.)
Parts of a Computer

- Mouse
- Monitor
- Power Supply
- Network Card
- Keyboard
- CD Drive
- Floppy Drive
- Hard Drive
- Motherboard
- DRAM
- Processor
- Speakers
Appendix B – Parts of a Computer

Micron™
K–12 Programs

C

H

I

P

memory chip
chocolate chip
potato chip
ASCII Binary Table

<table>
<thead>
<tr>
<th>Decimal</th>
<th>ASCII</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>blank</td>
<td>00100000</td>
</tr>
<tr>
<td>33</td>
<td>!</td>
<td>00100001</td>
</tr>
<tr>
<td>34</td>
<td>"</td>
<td>00100010</td>
</tr>
<tr>
<td>35</td>
<td>#</td>
<td>00100011</td>
</tr>
<tr>
<td>36</td>
<td>$</td>
<td>00100100</td>
</tr>
<tr>
<td>37</td>
<td>%</td>
<td>00100101</td>
</tr>
<tr>
<td>38</td>
<td>&</td>
<td>00101000</td>
</tr>
<tr>
<td>40</td>
<td>(</td>
<td>00101001</td>
</tr>
<tr>
<td>41</td>
<td>)</td>
<td>00101100</td>
</tr>
<tr>
<td>42</td>
<td>*</td>
<td>00101101</td>
</tr>
<tr>
<td>44</td>
<td>,</td>
<td>00110010</td>
</tr>
<tr>
<td>45</td>
<td>–</td>
<td>00110011</td>
</tr>
<tr>
<td>46</td>
<td>.</td>
<td>00110110</td>
</tr>
<tr>
<td>65</td>
<td>A</td>
<td>01000001</td>
</tr>
<tr>
<td>66</td>
<td>B</td>
<td>01000010</td>
</tr>
<tr>
<td>67</td>
<td>C</td>
<td>01000011</td>
</tr>
<tr>
<td>68</td>
<td>D</td>
<td>01000100</td>
</tr>
<tr>
<td>69</td>
<td>E</td>
<td>01000101</td>
</tr>
<tr>
<td>70</td>
<td>F</td>
<td>01000110</td>
</tr>
<tr>
<td>71</td>
<td>G</td>
<td>01000111</td>
</tr>
<tr>
<td>73</td>
<td>I</td>
<td>01001001</td>
</tr>
<tr>
<td>74</td>
<td>J</td>
<td>01001010</td>
</tr>
<tr>
<td>75</td>
<td>K</td>
<td>01001011</td>
</tr>
<tr>
<td>76</td>
<td>L</td>
<td>01001100</td>
</tr>
<tr>
<td>77</td>
<td>M</td>
<td>01001101</td>
</tr>
<tr>
<td>78</td>
<td>N</td>
<td>01001110</td>
</tr>
<tr>
<td>79</td>
<td>O</td>
<td>01010000</td>
</tr>
<tr>
<td>80</td>
<td>P</td>
<td>01010001</td>
</tr>
<tr>
<td>82</td>
<td>R</td>
<td>01010010</td>
</tr>
<tr>
<td>83</td>
<td>S</td>
<td>01010011</td>
</tr>
<tr>
<td>84</td>
<td>T</td>
<td>01010100</td>
</tr>
<tr>
<td>85</td>
<td>U</td>
<td>01010101</td>
</tr>
<tr>
<td>86</td>
<td>V</td>
<td>01010110</td>
</tr>
<tr>
<td>87</td>
<td>W</td>
<td>01010111</td>
</tr>
<tr>
<td>88</td>
<td>X</td>
<td>01011000</td>
</tr>
<tr>
<td>89</td>
<td>Y</td>
<td>01011001</td>
</tr>
<tr>
<td>90</td>
<td>Z</td>
<td>01011010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>ASCII</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>[</td>
<td>01011011</td>
</tr>
<tr>
<td>92</td>
<td>\</td>
<td>01011100</td>
</tr>
<tr>
<td>93</td>
<td>]</td>
<td>01011101</td>
</tr>
<tr>
<td>94</td>
<td>^</td>
<td>01011110</td>
</tr>
<tr>
<td>95</td>
<td>_</td>
<td>01011111</td>
</tr>
<tr>
<td>96</td>
<td>`</td>
<td>01100000</td>
</tr>
<tr>
<td>97</td>
<td>a</td>
<td>01100001</td>
</tr>
<tr>
<td>98</td>
<td>b</td>
<td>01100010</td>
</tr>
<tr>
<td>99</td>
<td>c</td>
<td>01100011</td>
</tr>
<tr>
<td>100</td>
<td>d</td>
<td>01100100</td>
</tr>
<tr>
<td>101</td>
<td>e</td>
<td>01100101</td>
</tr>
<tr>
<td>102</td>
<td>f</td>
<td>01100110</td>
</tr>
<tr>
<td>103</td>
<td>g</td>
<td>01100111</td>
</tr>
<tr>
<td>104</td>
<td>h</td>
<td>01101000</td>
</tr>
<tr>
<td>105</td>
<td>i</td>
<td>01101001</td>
</tr>
<tr>
<td>106</td>
<td>j</td>
<td>01101010</td>
</tr>
<tr>
<td>107</td>
<td>k</td>
<td>01101011</td>
</tr>
<tr>
<td>108</td>
<td>l</td>
<td>01101100</td>
</tr>
<tr>
<td>109</td>
<td>m</td>
<td>01101101</td>
</tr>
<tr>
<td>110</td>
<td>n</td>
<td>01101110</td>
</tr>
<tr>
<td>111</td>
<td>o</td>
<td>01101111</td>
</tr>
<tr>
<td>112</td>
<td>p</td>
<td>01110000</td>
</tr>
<tr>
<td>113</td>
<td>q</td>
<td>01110001</td>
</tr>
<tr>
<td>114</td>
<td>r</td>
<td>01110010</td>
</tr>
<tr>
<td>115</td>
<td>s</td>
<td>01110011</td>
</tr>
<tr>
<td>116</td>
<td>t</td>
<td>01110100</td>
</tr>
<tr>
<td>117</td>
<td>u</td>
<td>01110101</td>
</tr>
<tr>
<td>118</td>
<td>v</td>
<td>01110110</td>
</tr>
<tr>
<td>119</td>
<td>w</td>
<td>01110111</td>
</tr>
<tr>
<td>120</td>
<td>x</td>
<td>01111000</td>
</tr>
<tr>
<td>121</td>
<td>y</td>
<td>01111001</td>
</tr>
<tr>
<td>122</td>
<td>z</td>
<td>01111010</td>
</tr>
<tr>
<td>123</td>
<td>{</td>
<td>01111011</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>}</td>
<td>01111101</td>
</tr>
<tr>
<td>126</td>
<td>~</td>
<td>01111110</td>
</tr>
</tbody>
</table>
Write Your Name in ASCII

Using your ASCII Table, complete the name worksheet. Write your full name (first, last, and middle initial) in ASCII using both uppercase letters and lowercase. Don’t forget the spaces and period. Put one letter and its ASCII code into each row of the table. Put the decimal equivalent to the right of each letter.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Decimal</th>
<th>Binary Conversion (ASCII)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>78</td>
<td>0 1 0 0 1 1 1 0</td>
</tr>
</tbody>
</table>
Human Computer Game Rules

1. No talking while the computer is running.
2. If the rules are not followed, the computer must be turned off.
3. If an incorrect answer is given, the computer must be turned off and then on again and the process stared over.
4. USER
 a. USER must stay under his or her name.
 b. USER can receive a card only from 1/0 or printer.
 c. USER can give a card only to 1/0.
5. I/O
 a. I/O must stay under his or her name.
 b. I/O can receive a card only from USER or BUS.
 c. I/O can give a card only to USER or BUS.
6. BUS
 a. Must do whatever I/O or CPU says, and return to his or her name.
 b. BUS can receive a card only from I/O, CPU, or MEMORY.
 c. BUS can give a card to everyone except USER.
7. CPU
 a. CPU must stay under his or her name.
 b. CPU can receive a card only from BUS.
 c. CPU can give a card only to BUS.
8. MEMORY
 a. MEMORY must stay under his or her name.
 b. MEMORY can receive a card only from BUS.
 c. MEMORY can give a card only to BUS.
9. PRINTER
 a. PRINTER must stay under his or her name.
 b. PRINTER can receive a card only from BUS.
 c. PRINTER must rewrite on printer paper whatever information BUS gives and wait for USER to come pick it up.
Human Computer Game Script

Begin
1 EVERYBODY in position.
2 EVERYBODY on their knees, except USER. COMPUTER is OFF.

Turn on
3 USER selects a problem and writes it on board.
4 USER touches I/O’s head to turn computer ON.
5 EVERYBODY stands up.

Number
6 USER picks a RED card and gives it to I/O.
7 I/O gives the RED card to BUS.
8 BUS gives the RED card to CPU.
9 CPU gives the RED card back to BUS.
10 BUS runs to MEMORY and gives MEMORY the RED card.
11 BUS returns.

Function
12 USER picks a BLUE card and gives it to I/O.
13 I/O gives the BLUE card to BUS.
14 BUS gives the BLUE to CPU.
15 CPU keeps the BLUE card.

Number
16 USER picks another RED card and gives it to I/O.
17 I/O gives the RED card to BUS.
18 BUS gives the RED card to CPU.
19 CPU keeps the RED card.
20 BUS runs to MEMORY and gets the first RED card from MEMORY.
21 BUS returns and gives CPU the RED card.

Answer
22 CPU looks at both RED cards and the BLUE card and writes the answer on a YELLOW card.
23 CPU gives the YELLOW card to BUS.
24 BUS gives the YELLOW card to MEMORY and returns.
25 CPU writes the answer on another YELLOW card and gives it to BUS.

Printout
26 BUS gives the YELLOW card to PRINTER and returns.
27 USER goes to PRINTER.
28 PRINTER looks at the YELLOW card and prints the answer on the printer paper.
29 PRINTER gives USER the printer paper with the answer on it.
30 USER returns and writes the answer on the board.
Storage Capacity Equivalents

To store 1000 MB requires...

1 GB Drive
1000 MB

10 ZIP Disks (100 MB)
781 Text-Only Books

694 Floppy Disks (1.44 MB)
1.6 CD ROMs (640 MB)
3.1 Hard Drives (320 MB)

K-12 Programs
Summary Activity

Think of both a computer and a person as information processing machines. Identify the four components of an information-processing devise for both and complete the following table.

<table>
<thead>
<tr>
<th></th>
<th>COMPUTER</th>
<th>PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input done with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage done with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information processing done by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output done with</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assemble the Computer Challenge – Extension Activity

Preparation and directions:
- Obtain an older computer that can be disassembled and reassembled.
- Disassemble the computer.
- Review the descriptions with the students.
- Using the component list and the numbered dots attach the correct number to the actual component.
- Allow students time to examine, make observations, and ask questions about the components.
- Use the photos as a guide for checking the results.

Power Supply
- Converts the alternating current (AC) power to direct current (DC) power for use by the computer components.
- Power is supplied to all components from the main supply through the colored wires that end in plastic connectors.
- Part of the process function

Central Processor Unit (CPU)
- The brains of the computer
- Oversees most of the operations of the computer
- Attached to the motherboard
- Has a dedicated fan to cool it
- Part of the process function

Motherboard
- Main circuit board which connects internal components together
- CPU and memory are generally on the motherboard
- Responsible for sending power, data, and instructions among all of the components
- Part of the process function

Network Port
- Connection port of network cables allowing multiple computers to be hooked together
- Part of the process function

Fan
- Draws cool air over the components inside the case
- Prevents the computer for over-heating
Appendix I – Parts of a Computer

Ribbon Cables
- Wide flat grouping of wires
- Used to connect the motherboard and the drives
- Separate cables are needed for each drive
- Part of the process function

Case
- Metal or plastic box surrounding the internal components of the computer
- Protects parts from dust and damage
- Often erroneously called the CPU

CD/DVD Drive
- Uses a laser beam to read data from a spiral of indentations and flat areas on a layer of metallic film
- If the data track could be lifted off a CD in a straight line, it would be almost 3/5 miles long
- DVDs store information in two separate layers and use a smaller laser beam to read the information
- Connects to the motherboard with a ribbon cable
- Part of the storage function

Floppy Drive
- Reads and writes data on a 3.5 inch floppy disk
- Connects to the motherboard with a ribbon cable
- USB flash or optical drives have replaced floppy drives in newer systems
- Part of the storage function

Hard Drive
- Large capacity magnetic storage system which stores system components, program files, and documents in a relatively permanent form
- Busiest mechanical part of computer – spins at 170 mph
- Connects to the motherboard with a ribbon cable
- Part of the storage function

DRAM parts and Memory module
- DRAM = Dynamic Random Access Memory
- Very fast storage used for data
- Memory chips contain millions of transistors and capacitors used to store programs and data
- Connects with the motherboard through an expansion port
- The module is a circuit board and connector which holds multiple memory chips.
- Part of the storage function

Keyboard and Mouse Ports
- Connection port for keyboards
- Part of the input function
USB Ports
- USB = Universal Serial Bus ports
- Used to connect keyboards, mouse devices, monitors, printers, and other accessories without conflict
- Provides power and versatility
- May be in the front of the case and attached through a ribbon cable or connected directly to the motherboard
- Depending on what is connected can be used for input, storage, or output

Sound Card
- Allows computer to play and record audio by converting analog sounds to digital and back
- Contains external jacks that allow microphones and speakers to be plugged in
- Connected to the motherboard by an expansion port
- Part of the input and output functions

Graphics Card
- Translates image information from the computer into a form for display on the monitor.
- Connected to the motherboard by an expansion port
- Part of the output function
Appendix I – Parts of a Computer

Component List

Items marked with the ** can be removed from the computer.

1. Power Supply
2. Central Processor Unit (CPU)
3. Motherboard
4. Network Port
5. Ribbon Cables
6. Fan
7. Case
8. CD/DVD Drive **
9. Floppy Drive **
10. Hard Drive **
11. DRAM parts and Memory module **
12. Keyboard and Mouse Ports
13. USB Ports
14. Sound Card **
15. Graphics Card **

Numbers for components

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
Appendix I – Parts of a Computer

- USB Ports
- Graphics Card
- Network Port
- Power Supply
- Fan
- Memory Module
- Graphics Card
- Expansion Slot
- CPU - under the fan
- Motherboard
- Case
- USB Ports
- Expansion Slot
- Network Port
- Graphics Card
- Power Supply
- Ribbon Cables