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Copyright guidelines

By using any content provided by the Micron Educator Hub, you acknowledge that Micron Technology, Inc. (“Micron”) is the sole owner of the content and
agree that any use of the content provided by the Micron Educator Hub must comply with applicable laws and require strict compliance with these Guidelines:

1. Credit shall be expressly stated by you to Micron for use of the content, including any portion thereof, as follows:
a. “© 2022-2025 Micron Technology, Inc. All Rights Reserved. Used with permission.”

You may not use the content in any way or manner other than for educational purposes.

You may not modify the content without approval by Micron.

You may not use the content in a manner which disparages or is critical of Micron, its employees, or Micron’s products/services.

o & b

Permission to use the content may be canceled/terminated by Micron at any time upon written notice from Micron to You if You fail to comply with the
terms herein.

6. You acknowledge and agree that the content is provided by Micron to You on an “as is” basis without any representations or warranties whatsoever, and
that Micron shall have no liability whatsoever arising from Your use of the content. Micron shall ensure that the content does not violate any statutory
provisions and that no rights of third parties are infringed by the content or its publication. Otherwise, liability of the parties shall be limited to intent and
gross negligence.

7. You acknowledge and agree that the content is the copyrighted material of Micron and that the granting of permission by Micron to You as provided for
herein constitutes the granting by Micron to You of a non-exclusive license to use the content strictly as provided for herein and shall in no way restrict or
affect Micron’s rights in and/or to the content, including without limitation any publication or use of the content by Micron or others authorized by Micron.

8. Except for the above permission, Micron reserves all rights not expressly granted, including without limitation any and all patent and trade secret rights.
Except as expressly provided herein, nothing herein will be deemed to grant, by implication, estoppel, or otherwise, a license under any of Micron’s other
existing or future intellectual property rights.
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How to cite sources from the Micron Educator Hub

* Micron is committed to collaborate with
educators to make semiconductor memory education
resources available through the
Micron Educator Hub

* The content in the Micron Educator Hub has
been identified by Micron as current and
relevant to our company

* Please refer to the table on the right for
proper citation

Whole slide deck or whole
document

Description: User uses the whole slide
deck or whole document AS IS,
without any modification

No additional citation required

Full slide or full page

Description: User incorporates a full
slide or a full page into their own slide
deck or document

“© 2022-2025 Micron Technology, Inc.
All Rights Reserved. Used with
permission.”

Portion of a slide or portion of
a page

Description: User copies a portion of a
slide or a portion of a page into a new
slide or page

This is not allowed

micron
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Data Science in memory manufacturing — goal and objectives

Goal Objectives

 Participants will gain understanding on source of « |dentify the different sources of data in
data and analytical methodologies in semiconductor memory manufacturing
. ¢ :
semiconductor manufacturing » Understand the different roles and team dynamics

of data science in semiconductor manufacturing

micron
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Target Audience

* Interns, NCGs (new college grads), and new employees in some Pro tip
technical roles need to understand these concepts Everyone interviewing at Micron can

use this presentation to prepare for
the interview by learning foundational
information about memory. Check out
the candidate guides for Engineering,
Data Analyst Technician and Business roles.

Data Engineer

» Examples of critical target audience roles at Micron that utilize
these concepts

i4.0 Analyst

 Micron engineering candidate quide

Solution Architect
— Al Architect * Micron technician candidate guide

Domain Architect  Micron business candidate quide

Cloud Application Architect

Machine Learning Engineer

Data Scientist

micron 6


https://www.micron.com/educatorhub/courses/engineering-candidate-guide
https://www.micron.com/educatorhub/courses/engineering-candidate-guide
https://www.micron.com/educatorhub/courses/technician-candidate-guide
https://www.micron.com/educatorhub/courses/technician-candidate-guide
https://www.micron.com/educatorhub/courses/business-candidate-guide
https://www.micron.com/educatorhub/courses/business-candidate-guide

Data Science
Big Picture

micron \



Industrial Revolution enablers by generation

1st Industrial
Revolution

18th Century

Mechanization
Steam-based
Machines

Images created for Micron by Copilot

2" Industrial
Revolution

19th ~ 20t Century

"

Electrical Energy-
based Mass
Production

31 Industrial
Revolution

Late 20t Century

Computer and
Internet-based
Knowledge

Artificial Intelligence
Information Technology

Intelligence

Machine Learning

Gen Al (LLM, etc.)

Agentic Al

We are here

4th Industrial
Revolution

Early 21st Century

1:3‘

R N
i\
1 /) \
\
W/
p
¢

Cyber Physical
System to have
robots do
“cognitive” work
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https://www.micron.com/about/micron-glossary/machine-learning
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/large-language-models
https://www.micron.com/about/micron-glossary/agentic-ai

Key enablers for Big Data and Artificial Intelligence

« Massive data collection capability

« Highly scalable computational power and
storage

» Sophisticated machine learning algorithms

These key enablers are explored in more depth
in the next slides

Artificial Intelligence
Information Technology

Intelligence

Machine Learning Big Data

Gen Al (LLM, etc.) loT

Agentic Al Cloud

micron
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https://www.micron.com/about/micron-glossary/machine-learning
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/large-language-models
https://www.micron.com/about/micron-glossary/agentic-ai

Massive data collection

Intelligent sensors with edge node

— With data processing (ML) & transmittance
capability

5G wireless network

— Super high band width for wireless real time
communication which is 100X faster than 4G

Optical network

— Wired network as backbone to support 5G
base station

Semiconductor industry

— Manufacturing equipment and facility also
generate massive data every second

— Opportunity: Big data from decades ago

Vibration

Sensor

Thermography

A/D
Converter

il

micron
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Highly Scalable Computational Power

Mid 1990’s Mid 2000’s Current
» Personal Computer » Google’s advanced search engine « Non-IT Industries to
O (Intel/Microsoft/Apple) @) indexes massive internet data O use scalable
» Cloud technology clusters servers to computational power
scale up data processing capability - Digital transformation
e.g., Hadoop as open source takes place in
manufacturing
7 A N
1950’s ~ 1990’s Late 1990’s to early 2000’s Early 2010’s to current
» Mainframe Computer * Internet connects PCs « Meta (Facebook) and Twitter use

over the world cloud technology to build their
social network sites

| \  Amazon provides cloud services

e

micron 11
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Highly Scalable Computing Power

and Storage

HHIHIH H IEEIIE
TEHTHI ; - — -
HITFAIE HIH] [HHIIH
[HHIIH]

G =) =) —)
G- =) /)G —)

~ CO
O

C

-

=) (=== =) (===

[ § OO

= ] O

= ) (o

=Y an

=] oD

=) G-

=) (==

= |

v — ) G-

=) =) — ) =

=) (===

=) (===

—
]
N
~

) =

= Jax

=)

Jax

=) (===

) e

-) (...
] ax
_] (_.u
)&
-) (...
)=

. . (

Corporations can now scale up both computational power and storage

as their businesses grow utilizing cloud service =
(...
(.
C

G- ) (-

=) (===

=
= I X

=) (===

. ) -
- — )

Enables individuals to have massive data processing and storage ) G

capability as collected data grows

|
e
)

micron 12



Machine Learning

1950’s ~ 1990’s 2000’s ~ early 2010’s Current
* Neural Network is invented in the 1950’s . Decision Tree Algorithm « Enables nonparametric data analysis
* A primitive neural network is developed « Random Forest » No prefixed distribution nor prefixed
for the United States Postal Service for O - Gradient Boosting Machine O assumption
@, reading zip codes  Feature Selection & Prediction
Model 3.7
Neural Network Decision Tree Algorithm

2010’s ~

v“V“v Neural Network suddenly became mainstream
\\'// \\\:1// }\é « Multi-layered Neural Network (a form of Deep Learning)

AN AN
V?V \ézV \X «  Massive but simple matrix computation powered by GPU
A,A‘& RN A,A‘& » Feature Selection & Prediction (or recognition)

AW

Multi-layered Neural Network

micron 13


https://www.micron.com/about/micron-glossary/neural-networks
https://www.micron.com/about/micron-glossary/neural-networks
https://www.micron.com/about/micron-glossary/deep-learning
https://www.micron.com/about/micron-glossary/decision-trees
https://www.micron.com/about/micron-glossary/decision-trees
https://www.micron.com/about/micron-glossary/random-forest
https://www.micron.com/about/micron-glossary/random-forest

Traditional Statistics

What traditional parametric statistic has been...

1>< 1 (Inx — p)?
X g\2m 202

Poisson Distribution Akee=4
Asymmetric and skewed Il

mil e L3 [

Particle Count distribution

Log Normal Distribution
Asymmetric and skewed

1 e—%(%)z « Statistical distribution varies depending on data type

0'\/% » Before doing any statistical modeling, one may need to
determine which data fits which distribution

« Correlation among different data of different distribution may not
be all linear e.g. y = ax + b presuming normal distribution

« But “true” correlation can be anything other than linear

« e.g.y=exp(—ax), y = bx? , etc....

» May not be able to discover those relationships if only using

y = ax + b as fitting model

Normal Distribution
Symmetric

Line Width Measurement distribution micron. | 14



Regression model e.g. polynomial

The data is known to have no correlation with Q-time

[%] (%]

Yield
Yield

Q-Time

Fitting by 3" order of polynomial

At Micron Q-Time refers to the max allowable time interval between two manufacturing
process steps. It is a critical control parameter used to prevent degradation in yield

Queue Time (Q-Time) vs. Yield -> want to find out at which time the yield decays
Regression model may provide rough idea on correlation

However, to what extent does this regression model reflect the physical phenomena
occurring on the wafer during processing?

Do we know each term in polynomial regression x, x*2, x"3, x*4?
Might there be another model that better fits the data or process? E.g., exp(x)

The data is known that cliff is present at 3.7 hours

Traditional Statistics

When you use
regression model,

you presume such

physical
mechanism

e

\

-2

-2

\

y = BotPrxt Pox? + Paxd+. .+ Bx"+E

micron
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Machine Learning

What machine learning does (e.g. ’"Random Forest”)

Your Data Sheet to Explore

| ’® \

[1] Equation: y = f(x¢1, Xgp Xg3 -« ... X;), Where i is the number of explanatory variables
[2] Randomly select x parameters starting from x,
[3] Change Point Detection — identify the point where the mean gap in y is maximized

[4] Node Assignment — change point is set as “node” and x data is split into two groups [5]
Recursive Splitting - repeat step 3 within each group to find additional nodes

[6] If x4 is selected as relevant, then the node based on x4 is considered truly predictive
« Atruly correlated variable tends to show a relatively large mean gap
« The model may not provide an exact value but provides reliable estimate of mean

» Adecision tree that includes x,3 as a node should demonstrate better predictive

performance than one without it , _ _ .
Example continues in next slide Micron | 16



Machine Learning

Random Forest to find highly correlated parameter

. . Node by relevant variable . Terminal

N firrelevant indi r
O ode of irrelevant indicato [7] Repeat [2] to [5] to create multiple

f \ trees to form a “forest”
The forest and/or trees with node of
relevant variable have better predictability
at the terminals on “y”
Key Points
* The flow presumes no assumption on
K J data distribution

Evaluate all parameters and data

points with equal importance

* Requires extensive and repetitive
calculations to build the decision tree
and reach converge for identifying key
parameters

» Dependent on high-performance
computing resource

micron 17




Machine Learning transforms data analysis

In memory manufacturing, massive number of parameters Light Source
are controlled and understood 1 S ~5000 parameters

- Y - f(Xl’XZ’ X3 ren aan ""XTI.)

— Where n can be hundreds to thousands per parameter

Y of interest

— n becomes larger and larger as technology node
advances

Break limitation of deterministic modeling

— Remove subjective interpretation by human
- Regression model
- Statistical Distribution of data
- Physical fundamental formula

Explore key features from data

— Nonparametric approach with no presumed model
— Focus on feature engineering

— Use data to explain what is happening

Photoresist
Film Stack

from photolithography

VXD =p,
VXB =0
U E 0B
XE=——
ot
V><H-—6D-+
~ ot /
1 —
1 e_f(%)z
oV2n

dU = Tds — pdV + Z wdN,
i
dH =Tds + Vdp + Z uidN;

l
dF = —SdT — pdV + Z i dN;

l
dG = —SdT + Vdp + z udN;
i

\[ S/
Halla
(NS

“\\\ U\ l’\\

W W W
4
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Machine Learning vs. Traditional Statistics

Traditional Statistics approach

» Expectations for Machine Learning in manufacturing are very high

« However, manufacturing engineers are deeply rooted in p-value based
statistical methods

34.1% 34.1%

— p-value ( p < 0.05) based judgement has long served as backbone for
process validations/still common language to make assertive decision in
manufacturing

» Yet advanced statistical & nonparametric approach does exist

« Statistical approach and machine learning have been co-existing and

AN
utilized in hybrid mode in the field W ‘\‘

‘ .A\ "A\ “A\

i,

micron. |



Generative Al (Gen Al)

https://www.micron.com/about/micron-glossary/generative-ai

* Definition:  Prompt engineering:
— Generative Al - commonly known as Gen Al - refers — The process by which humans interact with generative
to artificial intelligence systems capable of creating Al, crafting, and refining queries to ensure the models

new content—such as text, images, audio, or
code—based on patterns learned from existing
data.

— Can help write better emails

- Prompt example: “Rewrite this email for clarity. Use
— Gen Al models are trained on large datasets professional tone.”

e How It Works:

using deep learning architectures, often involving
transformers and Large Language Models (LLMs)
for text-based tasks. These models generate

outputs that closely resemble human-created received in the last week.”
content. — Planning a trip
 Examples:

— Text generation
— Image synthesis
— Code generation

understand and respond effectively.

« Some Gen Al use cases to get started:

— Identifying action items from an email or meeting
- Prompt example: “List action items from all emails |

- Prompt example “I will be traveling for work for 3
weeks to Hiroshima, Japan in March. Provide two
weekend itineraries to learn about the culture.”

micron
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https://www.micron.com/about/micron-glossary/deep-learning
https://www.micron.com/about/micron-glossary/large-language-models
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/prompt-engineering
https://www.micron.com/about/micron-glossary/prompt-engineering

Data in memory
manufacturing

micron




Micron delivers a broad portfolio of memory and storage
Memory Storage

High-bandwidth Multichip

memory (HBM), Low-power DRAM packages Solid-state drives Flash storage

and graphics
memory (GDDR) and DRAM &DAF?\IADI\;I and (SSD) (NAND and NOR)

solutions
Cloud Cloud
o d oo
=
Micron
e |
LPODRSX
High-bandwidth High-capacity Low-power, Memory expansion High-performance High-capacity data
in-package memory DRAM modular memory with CXL™ data center center NVMe SSD qu-power memory
Micron HBM4 and 256GB MRDIMM  Micron SOCAMM Micron CZ122 NVMe SSD Micron 6550 ION Micron LPDDR5X
HBM3E and 128GB Micron 9550
Micron DDR5 ’
E d Compute DRAM
ge Micron DDR5
micron
/
Low-power memory Universal flash storage High-performance Quad-port, SR-IOV High-performance Exa m p I es Of M ICron
Micron LPCAMM2 Micron UFS 4.1 client NVMe™ SSD SSD for automotive graphics memory .
Micron 4600 Micron 4150AT Micron GDDR7 portfol o p roducts

micron 22



Let’s explore DRAM Memory

DRAM .

« Dynamic [

+ Random S ——

« Access - L

° Memory @) |—| °
Transistor

DRAM Memory Cell

To store 1/0 bit

AV 10V

Controller

Read IWrite

DRAM L
products

How many
bits working ?

« Billions of DRAM memory cells, each with a transistor and a capacitor, store binary information in the form of a 1 or a 0.
— The transistor acts as a switch (turns on or turns off) to allow access to the capacitor
— To store a “0” on the capacitor, 0 volts are sent to the capacitor
— To store a '1' on the capacitor, a higher voltage is sent to the capacitor (e.g., 1 volt)

« Additional peripheral circuitry reads and writes the binary data to individual cells.

» To learn more about what is semiconductor Memory, types of Memory, and how they work please refer to the Intro to
Memory module: https://www.micron.com/educatorhub/courses/intro-to-memory

micron | 23


https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-memory

Where does the data come from within DRAM?
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Proportional accuracy

S

Photoresist
Film stack
Silicon

Photolithography
schematic

A 400m long bullet train with multiple cars would have
to stop within a 2.6um precision (less than the width of
a human hair) at a platform to match the precision of
the photolithography tool! (Note: the precision of a real
train is a few centimeters).

4

The 300mm diameter wafer stops within 2nm accuracy in
X, Y and Z directions in some photolithography tools, and each
x layer needs to be aligned precisely (overlay) with prior layers.

micron | 2



Proportional aspect ratio

An example from

Japan:
634 meters (~2080 feet)
68 meters (~223 feet)
5 Tokyo
E——) - Skytree
buildings!
Aspect Ratio (AR) =
height/width
5
2
width AR for the Tokyo Skytree ~ 10 AR for a DRAM capacitor cylinder ~50!

micron. | 2



Proportional aspect ratio

An example from

__ 5 Washington

Monuments!

the United States:

Aspect ratio for DRAM
capacitor cylinder ~50!

27

micron

Washington Monument, Washingfon DC
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How small is the nanometer scale

...that is similar to comparing a 0.5 mm line from a

Let's say that a DRAM line width is mechanical pencil to 10 kilometers, which is the
approximately 15 nm. If we compare the line distance from Shinagawa to Ikebukuro station in Tokyo!

width to a 300 mm diameter wafer... —

15nm B 0.5 mm
300mm  10km

It is difficult to imagine the nanometer scale.

Yamanote subway map in Tokyo

5 km
3 miles

-

~10 km (6.2 miles) is the distance from

hi i Ikebuk i
e e e e Shinagawa Station to Ikebukuro Station

300 mm diameter wafer

micron 28



Data in Semiconductor manufacturing

Prime Data

+ Data that has immediate impact to yield
& quality of products

» Collected inline & real time during
manufacturing

« Semiconductor industry has used “Big
Data” for decades

* Here are some examples

SPC (Statistical Process Control)
Any issues or trends seen in the data?

Film thickness [A]
480

470

460 A

450

440 —ucL

430

P bl v stttk Sl —LCL

410 - =Target

400

390

380 _ e e e m e e e e Em e
Probe Testing

Wafer Yield: good die / all die
Involves hundreds of tests (and test results)
on each die .

Equipment Sensor Equipment History
Sensor data collected durlng wafer O Which equipment processed a wafer at
processing il s | a4 a specific process step?
O When was preventive maintenance
done on the equipment?
Critical Dimensions Defects
Line & Space, thickness, depth Number of particles, unwanted shape

Parametric Testing

Testing of electrical parameters from the
different components of the circuits involves
hundreds of tests (and test results) per

wafer I
~mL
ﬂ = - 1%

micron 29



IOT = “Internet of Things”

Other data in Semiconductor manufacturing

Weather
Temperature, humidity, |
lighting

Clean Room
Environment
Humidity, temperature,
airborne molecular
contamination

Utility
Electrical power supply, gas supply, air
condition

loT evolution
loT: Internet of Things %
Has enabled additional

equipment/processing data collection
Potentially impact yield & quality

Dt

Equipment Parts
Transport robot

Vacuum pump
Environment

Facility

Manufacturing
Line

Overhead Hoist

Transport

Real time location
and routing,
congestion monitor

micron
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Priorities in Memory Manufacturing

Yield
Make it functional
(())
Quality &
Make better =
@)
>
Cycle Time o3 g—
Make faster © S
D o
Cost p %
Spend less S

Data shown in previous slides is analyzed to optimize these key priorities

This data has been produced solely for educational purposes and does not represent real Micron data. .
JMicron 31



Big Data/Al integration in semiconductor industry

New data

Environment

Real Fab ’

Digital Twin Virtual Fab
enables virtual fab-wide
experiment without
physical impact

Drive Yield/Quality
Cost/Cycle Time improvement

micron 32



Data Science
Roles and Team
Dynamics

micron




How Data Science Team is formed

Domain Expertise Business/Finance/Supply Chain

Engineering/Factory/Medical

Business

Mathematics/Statistics/Machine

Paiakscicncticiioss Learning/Visualization

Data Science Tools & Libraries

Data
Scientist

Tensor Flow/Sickit-Learn/Tidyverse
Python/R/Java/C++
Extract/Transform/Streaming
Network/Security

SQL DB/non-SQL DB/inMemory/File
Format

o)
o)
S
Qo
=
o
C
X
=
©
S
o
O

Programming Language

Full Stack Data Scientist

Data Access & Transformation

Engineering

IT Skill &Data
IT/Data
Engineer

Database Technology

Data Science Knowledge Stack

micron
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Data Science DynamiCS: Domain Expertise
Skills/Tools Coverage

—— e ke = sl - 1B e ' : -,. . | R — of N
Data Science NS AR A
Mg e TN —— ensors / lofT |

ML coding proficiency

Data Engineering Python, R, etc.

{ } Scikit- Tensor
{ } Learn Flow

..........

Data
visualization

|

Machine
learning

Wafer probe m;\ps

Metrology measurements | Wafer bitm-aps

e | |

micron 35



Dynamics of Data Science Project

Domain Knowledge Driven

Technology
Development
Engineers

Manufacturing
Engineers

Request

Needs Prototype

Data Scientist

Business
Process Analyst

Integrated

Solution Productization

How Data Science Project is Executed

Data Engineer

Ul Engineer

micron
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Prerequisite for Data Science in memory manufacturing

» Can you tell how DRAM memory stores single bit “0/1” information?
— Hint: Can use Micron Educator Hub to learn more, e.g., Intro to Memory

« Can you tell how DRAM memory is made?
— Hint: Can use Micron Educator Hub to learn more, e.g., Intro to Fabrication

» Can you tell how small an advanced transistor is?
—Hint: in the nanometer scale! Domain

knowledge

» Can you tell why overlay in photolithography is important?
—Hint: why is alignment between layers important?

micron 37


https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-fabrication

Prerequisite for Data Science Continued

» Can you explain the difference between mean and median?
— Hint: what if data distribution is skewed? What if there is excursion point?

» Can you explain difference between supervised and unsupervised learning?
— Hint: e.g. learning with labeled data for learning and prediction -> supervised y=f(x)

« Can you explain the concept of statistical significance?
— Hint: t-test, ANOVA, p<0.05

« Can you provide examples of 10T? DEF!

— Hint: devices to collect image/sound/temperature, etc. Science

| knowledge
« Can you provide examples of tools or methods that can be used for data

visualization?
— Hint: scatter plot, histogram, box plot, contour map

micron 38



Prerequisite for Data Science continued

» Can you develop analytical scripts with Python and/or R?
— Example: print (‘Hello World’) in Python

« Can you extract data from a database using SQL?
— Example: “select * from data_table”

» Can you create an interactive user interface (Ul) and what tools can you

use to do so? IT skills &
— Hint: Tableau, FLASK for more interactive Ul knowledge

micron 39



Integrating Data Science Jigsaw Puzzle Pieces into One

Problem Algorithm
Statement  Statistics

y

»

Integrated
Data Visualization DS (Data Science) Solution

Sourcing User Interface

- 3

micron 40
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Case Study: Wafer Map Analytic Domain

knowledge

« Each memory die on wafer is electrically tested Wafer Map
— Check every die functionality to ensure it is sellable to customer
« A Wafer Map is generated with the test results. Each die is represented by a rectangle in

the wafer map. Colors and codes may be used in the map to represent a good die or a
bad die. Bad die are further sub-categorized depending on the specific failing test.

* You may see “signatures” which may help identify what caused the functional failure

» The “signature” may help process engineers diagnose the reason for the failure or root 4 : . Scratch?
cause

« Highly dimensional data
— Product ID: specific type of device

— Lot ID: unique identifier assigned to a group of wafers that are processed together
through various stages of fabrication

— Wafer ID: unique identifier assigned to a wafer in a lot
— Die location (x,y): specific position of die on wafer
- VALUE

Lot ID: L123456 et

This data has been produced solely for educational purposes and does not represent real Micron data. . =
micron. | 42
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Electrical Functional Test Flow

Domain
knowledge

Probe Tests -> hundreds of tests to validate capacitors correctly store 1s and
Os: includes data reads and writes

Test
characterization
data

Data to be
collected

can be categorized Tester estimates if the die
into different fail types. can be repaired with the
Probe test algorithm existing redundant elements.
determines how to If the die is found to be

‘Repair’ (implementing repairable then mark as
‘redundant’ elements built “pass” otherwise, “fail”

into the die). 1111111 1]1]1

This good redundantt/k_Y_)

column is used to replace Redundant
the column with two fails

columns

Note: Redundant or spare rows and columns are manufactured in each DRAM die to replace non-functioning rows and columns.

This data has been produced solely for educational purposes and does not represent real Micron data. .
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Wafer Map of Probe Test Data: Bit Map Domain

knowledge

i e Single bit fails

Zl__H ||

« Bit Map

— Fails can be categorized into different fail
types, e.g., single bit, double bit, column/row

n i Double bit fail
Row fail

— Fails can also be visualized in a bit map

— Fail data can be used to determine how to , A A
repair using redundant elements built into the Die Column fails

die.
— Data level:

- Lot level data (5-25 wafers per lot) (e.g., Summary of fails
wafer level average)

- Wafer level data (e.g., fail count per wafer)
- Die level data (e.g., fail count per die)

Low fail count High fail count

This data has been produced solely for educational purposes and does not represent real Micron data. .
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Wafer Map of Probe Test Data: Repair Density

Domain

knowledge

* Repair Density

during testing

— How many repair elements were used to repair fails found o=t I:I/*"
|

— Data levels:
- Lot level data (e.g., wafer average repair count) EEEEEEEEEEEEEE NN
- Wafer level data (e.g., die average repair count)
- Die level data (e.g., repair count per die)

Low repair High repair
count count

This data has been produced solely for educational purposes and does not represent real Micron data. .
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Wafer Map of Probe Test Data:

 Fail Bin
— The probe testing consists of a series of tests, each with
specific conditions that test different circuit functionality

— Each test has a name and an associated color and character|

- For example, if a test finds open contacts that are not
repairable, the die fails to Bin O, and the wafer map will
show the die in orange color.

— Data: Symbolic e.g., character/color per die
— High Level Summary of fail mode of the die

This data has been produced solely for educational purposes and does not represent real Micron data.

Fail Bin o

knowledge

s\

Fail
<O AWLOI _»X 1=2Z000 wn
CEcCccEccEccccccccccEeEQ
MO MO MO NN M Mo QA
T OO GO ®TOCDTOECE®T O ®
I I N T N Ty I I Iy Iy A Wy R A A B R A R F R T A
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Wafer Map by resolution of the data

Domain
knowledge

Repair Density Fail Bin Map

Rich Information on yield/quality improvement opportunity

High Level Summary e.g., Yield

This data has been produced solely for educational purposes and does not represent real Micron data. .
micron 47



Problem

Problem statement Statement

« Semiconductor Fabs produce a remarkably
high volume of wafer outs daily—often in the
hundreds or even thousands.

(| 1 | | 3 s

« Within this output, some 'signatures' may
emerge, warranting further investigation

 Given time constraints, how would you
efficiently classify or group these wafers to
enable meaningful analysis?"

[
| |
. Fr 14

=
3
&N
N
N
N
S
\
\J

N
N
N
NN

SEFREL

L 6 b b F F 10 1 e e .




Problem

Wafer Map Classification by Human Statement

y

* A Micron engineer in the Yield Enhancement
Group was asked to monitor & summarize bit
map of “pizza slice” signature issue every two
weeks.

» The engineer has to look at the “wafer map” for
hundreds of wafers individually, to find which
wafers have such “pizza slice” signature. This Week 5 —Week 6: X High occurrence

takes the engineer about 5 hours every two Week 7 —Week 8: v Little occurrence
weeks. Week 9 — Week 10: v* Little occurrence

Week 11 — Week 12: A Some occurrence

Outcome
- Only three levels (high occurrence, some occurrence, little occurrence)

- The result can be subjective
- Less quantitative
- May not be reproducible if other persons do the same work

This data has been produced solely for educational purposes and does not represent real Micron data. .
JMicron 49



Algorithm

Wafer Map Analysis Data vs. Algorithm Statistcs

Data Type Analytic Approach

Numeric clustering algorithm
Bit Map Summary Numeric e.g. K-mean
Expectation Maximize

Numeric clustering algorithm
Repair Density Numeric e.g. K-mean
Expectation Maximize

Deep Learning
Pass & Failure Factorial (character) Autoencoder
Wafer Map to Image

micron

50



Algorithm

Wafer Map Classification Approach Statistcs
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Divide into 20 equal area zones
Radial & Quadrant to capture bit
count by wafer region

—_

=
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=
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=
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Iteration #6
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Convergence of k-means &
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w

N
=

N
o1
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-

Y.mm

| o|o|w|w|lo|z|zz > >
=
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Cluster<-kmeans(dff, 3:22], 15)

Create Data frame in either Python or R by
transforming die level data into aggregated mean
Xam value by zone

Wafer Zone definition

This data has been produced solely for educational purposes and does not represent real Micron data. micron 51



Integrated
DS
Solution

Wafer Map Clustering

Pizza Slice Pizza Slice

Pizza Slice

Pizza Slice

» Classification on 2000 wafers failure mode
* Visual inspection by human: Hours to a day
« By algorithm: 5 min

This data has been produced solely for educational purposes and does not represent real Micron data. JNICcron | 52



Integrated
DS

Comparison of human classification vs. algorithm ...

Classification by date by algorithm

Week 5 —Week 6: X Week 5 — Week 6: NN X: high occurrence
Week 7 —Week 8: v Week 7 — Week 8: Il v little occurrence

Week 9 — Week 10: v Week 9 — Week 10: Il v : little occurrence

Week 11 — Week 12: A Week 11 — Week 12: Il A: some occurrence

Good Cluster Bad wafers

By human eye inspection Clustering algorithm offers reproducible and
quantitative analytical results

This data has been produced solely for educational purposes and does not represent real Micron data. Jmicron 53



Integrated

Further Drilldown S

I' e Bad Wafers il Good « Subsequent drilldown analysis of manufacturing data
L " (pizza slice) | L \Waf revealed a clear distinction between good wafers and
— L g vvaiers those exhibiting 'pizza slice’ signature, which were

linked to a specific process step and equipment

« This insight guided process engineers to take
targeted corrective actions

« With continued investigation, the findings can evolve
— o+ into prescriptive guidance, offering actionable
il e Y ; solutions to resolve the underlying issue.

— Prescriptive result

MWWIW!l!l!liltmlmmmmumm’mm“"“ﬂ e v WMul!ImlmllmimmmmM{HHMNIHH

This data has been produced solely for educational purposes and does not represent real Micron data. minOfL 54



Summary on Wafer Map
Signature Analysis

* Clustering algorithm automated manual cognitive work by
human

« Visually identifies possible root cause of quality
degradation

* The outcome is objective, robust and more reproducible
than human classification

« With further drilldown the result can be prescriptive and
provide actionable results for process engineers to fix the
problem

micron
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Summary & Conclusion

» Catalyst for Big Data & Al in Smart Manufacturing

— Enabled by highly scalable computing, advanced
machine learning algorithms, and ultra-high bandwidth
loT networks

» Essential Role of Data in Memory Manufacturing

— Characterized by extremely small, precise dimensions
requiring meticulous data handling

* Dynamics of Data Science

— Domain knowledge is vital for meaningful insights and
effective application

* Real-World Application
— Wafer Map Analytics is reviewed as a case study for
improving yield and quality—illustrating typical analytics
practices in semiconductor manufacturing

micron. | o
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Glossary
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Glossary

Definition/description

Al Artificial Intelligence
AR Aspect Ratio
Big Data Large and complex data sets that require advanced methods and technologies to store, process, and analyze.

Capacitance

The ability of a system to store an electric charge, measured in farads.

Critical Dimension

The specific width or space between features on a semiconductor wafer that must be controlled precisely during manufacturing.

Data Science

The field of study that combines domain expertise, programming skills, and knowledge of mathematics and statistics to extract meaningful
insights from data.

Defect

An imperfection or anomaly in a semiconductor wafer that can affect the performance of the final product.

DRAM Memory Cell

A cell in DRAM that consists of one transistor and one capacitor where the capacitor can store binary information (1/0).

DRAM

Dynamic Random Access Memory, a type of fast memory used in computers and other devices to store data temporarily.

loT

Internet of Things. A network of physical devices embedded with sensors, software, and other technologies that enable them to collect, exchange,‘
and act on data over the Internet.

Machine Learning

A subset of artificial intelligence that involves the use of algorithms and statistical models to enable computers to perform tasks without explicit
instructions.

Parametric Data

Data that is measured and collected based on specific parameters or characteristics.

Probe The process of testing semiconductor wafers to identify functional and non-functional die.
SQL Structured Query Language

Transistor A semiconductor device used to amplify or switch electronic signals and electrical power.
Yield The number of good die produced divided by the total number of die on a wafer.

micron 58
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