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Copyright guidelines

By using any content provided by the Micron Educator Hub, you acknowledge that Micron Technology, Inc. (“Micron”) is the sole owner of the content and 

agree that any use of the content provided by the Micron Educator Hub must comply with applicable laws and require strict compliance with these Guidelines:

1. Credit shall be expressly stated by you to Micron for use of the content, including any portion thereof, as follows:

a. “© 2022-2025 Micron Technology, Inc. All Rights Reserved. Used with permission.”

2. You may not use the content in any way or manner other than for educational purposes. 

3. You may not modify the content without approval by Micron.

4. You may not use the content in a manner which disparages or is critical of Micron, its employees, or Micron’s products/services.

5. Permission to use the content may be canceled/terminated by Micron at any time upon written notice from Micron to You if You fail to comply with the 

terms herein. 

6. You acknowledge and agree that the content is provided by Micron to You on an “as is” basis without any representations or warranties whatsoever, and 

that Micron shall have no liability whatsoever arising from Your use of the content. Micron shall ensure that the content does not violate any statutory 

provisions and that no rights of third parties are infringed by the content or its publication. Otherwise, liability of the parties shall be limited to intent and 

gross negligence.

7. You acknowledge and agree that the content is the copyrighted material of Micron and that the granting of permission by Micron to You as provided for 

herein constitutes the granting by Micron to You of a non-exclusive license to use the content strictly as provided for herein and shall in no way restrict or 

affect Micron’s rights in and/or to the content, including without limitation any publication or use of the content by Micron or others authorized by Micron. 

8. Except for the above permission, Micron reserves all rights not expressly granted, including without limitation any and all patent and trade secret rights. 

Except as expressly provided herein, nothing herein will be deemed to grant, by implication, estoppel, or otherwise, a license under any of Micron’s other 

existing or future intellectual property rights.
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How to cite sources from the Micron Educator Hub

• Micron is committed to collaborate with

educators to make semiconductor memory education 

resources available through the

Micron Educator Hub

• The content in the Micron Educator Hub has

been identified by Micron as current and

relevant to our company

• Please refer to the table on the right for

proper citation

Use case How to cite sources

Whole slide deck or whole 

document

Description: User uses the whole slide 

deck or whole document AS IS, 

without any modification

No additional citation required

Full slide or full page 

Description: User incorporates a full 

slide or a full page into their own slide 

deck or document

“© 2022-2025 Micron Technology, Inc. 

All Rights Reserved. Used with 

permission.”

Portion of a slide or portion of

a page

Description: User copies a portion of a 

slide or a portion of a page into a new 

slide or page

This is not allowed
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Data Science in memory manufacturing – goal and objectives

• Participants will gain understanding on source of 

data and analytical methodologies in 

semiconductor manufacturing 

• Identify the different sources of data in 

semiconductor memory manufacturing 

• Understand the different roles and team dynamics 

of data science in semiconductor manufacturing

Goal Objectives
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Target Audience

• Interns, NCGs (new college grads), and new employees in some

technical roles need to understand these concepts

• Examples of critical target audience roles at Micron that utilize

these concepts

– i4.0 Analyst

– Data Analyst

– Data Engineer 

– Solution Architect

– AI Architect

– Domain Architect

– Cloud Application Architect

– Machine Learning Engineer

– Data Scientist

Pro tip
Everyone interviewing at Micron can 

use this presentation to prepare for 

the interview by learning foundational 

information about memory. Check out 

the candidate guides for Engineering, 

Technician and Business roles.

• Micron engineering candidate guide

• Micron technician candidate guide

• Micron business candidate guide

https://www.micron.com/educatorhub/courses/engineering-candidate-guide
https://www.micron.com/educatorhub/courses/engineering-candidate-guide
https://www.micron.com/educatorhub/courses/technician-candidate-guide
https://www.micron.com/educatorhub/courses/technician-candidate-guide
https://www.micron.com/educatorhub/courses/business-candidate-guide
https://www.micron.com/educatorhub/courses/business-candidate-guide
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Data Science 
Big Picture
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Industrial Revolution enablers by generation

1st Industrial 

Revolution

18th Century

Mechanization 
Steam-based 
Machines

2nd  Industrial 

Revolution

19th ~ 20th Century

Electrical Energy-
based Mass 
Production

3rd  Industrial 

Revolution

Late 20th Century

Computer and 
Internet-based 
Knowledge

4th Industrial 

Revolution

Early 21st Century

Cyber Physical 
System to have 
robots do 
“cognitive” work 

Artificial Intelligence

Information Technology

Intelligence

Machine Learning

Gen AI (LLM, etc.)

Agentic AI

Information

Big Data

IoT

Cloud

We are here

Images created for Micron by Copilot

https://www.micron.com/about/micron-glossary/machine-learning
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/large-language-models
https://www.micron.com/about/micron-glossary/agentic-ai
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Key enablers for Big Data and Artificial Intelligence

• Massive data collection capability

• Highly scalable computational power and 

storage

• Sophisticated machine learning algorithms 

These key enablers are explored in more depth 

in the next slides

Artificial Intelligence

Information Technology

Intelligence

Machine Learning

Gen AI (LLM, etc.)

Agentic AI

Information

Big Data

IoT

Cloud

https://www.micron.com/about/micron-glossary/machine-learning
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/large-language-models
https://www.micron.com/about/micron-glossary/agentic-ai
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Massive data collection

• Intelligent sensors with edge node

–With data processing (ML) & transmittance 

capability

• 5G wireless network

– Super high band width for wireless real time 

communication which is 100X faster than 4G

• Optical network 

–Wired network as backbone to support 5G 

base station

• Semiconductor industry

– Manufacturing equipment and facility also 

generate massive data every second

– Opportunity: Big data from decades ago

A/D

Converter

Thermography
Vibration

Sensor
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Highly Scalable Computational Power

1950’s ~ 1990’s 

• Mainframe Computer

Mid 1990’s

• Personal Computer 

(Intel/Microsoft/Apple)

Late 1990’s to early 2000’s

• Internet connects PCs 

over the world

Mid 2000’s

• Google’s advanced search engine 

indexes massive internet data 

• Cloud technology clusters servers to 

scale up data processing capability 

e.g., Hadoop as open source

Early 2010’s to current

• Meta (Facebook) and Twitter use 

cloud technology to build their 

social network sites

• Amazon provides cloud services 

Current

• Non-IT Industries to 

use scalable 

computational power

• Digital transformation 

takes place in 

manufacturing

Images created for Micron by Copilot
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Highly Scalable Computing Power 
and Storage

• Corporations can now scale up both computational power and storage 

as their businesses grow utilizing cloud service

• Enables individuals to have massive data processing and storage 

capability as collected data grows
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Machine Learning

1950’s ~ 1990’s
• Neural Network is invented in the 1950’s

• A primitive neural network is developed 

for the United States Postal Service for 

reading zip codes

2010’s ~
• Neural Network suddenly became mainstream

• Multi-layered Neural Network (a form of Deep Learning)

• Massive but simple matrix computation powered by GPU

• Feature Selection & Prediction (or recognition)

2000’s ~ early 2010’s
• Decision Tree Algorithm

• Random Forest

• Gradient Boosting Machine

• Feature Selection & Prediction 

Model 3.7

Current
• Enables nonparametric data analysis

• No prefixed distribution nor prefixed 

assumption

Neural Network

Multi-layered Neural Network

Decision Tree Algorithm

https://www.micron.com/about/micron-glossary/neural-networks
https://www.micron.com/about/micron-glossary/neural-networks
https://www.micron.com/about/micron-glossary/deep-learning
https://www.micron.com/about/micron-glossary/decision-trees
https://www.micron.com/about/micron-glossary/decision-trees
https://www.micron.com/about/micron-glossary/random-forest
https://www.micron.com/about/micron-glossary/random-forest
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What traditional parametric statistic has been…

Particle Count distributionYield per wafer distribution

Line Width Measurement distribution

Normal Distribution

Symmetric

Log Normal Distribution

Asymmetric and skewed

Poisson Distribution

Asymmetric and skewed

• Statistical distribution varies depending on data type

• Before doing any statistical modeling, one may need to 

determine which data fits which distribution

• Correlation among different data of different distribution may not 

be all linear e.g. 𝑦 = 𝑎𝑥 + 𝑏 presuming normal distribution

• But “true” correlation can be anything other than linear

• e.g. 𝑦 = exp(−𝑎𝑥), 𝑦 = 𝑏𝑥2 , etc….

• May not be able to discover those relationships if only using  

𝑦 = 𝑎𝑥 + 𝑏 as fitting model

Traditional Statistics

1

𝑥
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1
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Regression model e.g. polynomial

Fitting by 3rd order of polynomial

• At Micron Q-Time refers to the max allowable time interval between two manufacturing 
process steps. It is a critical control parameter used to prevent degradation in yield

• Queue Time (Q-Time) vs. Yield -> want to find out at which time the yield decays

• Regression model may provide rough idea on correlation

• However, to what extent does this regression model reflect the physical phenomena 
occurring on the wafer during processing?

• Do we know each term in polynomial regression x, x^2, x^3, x^4?

• Might there be another model that better fits the data or process? E.g., exp(x)

The data is known to have no correlation with Q-time The data is known that cliff is present at 3.7 hours

When you use 

regression model, 

you presume such 

physical 

mechanism

Y
ie

ld

[%]

Y
ie

ld

[%]

Traditional Statistics

𝑦 = 𝛽0+𝛽1𝓍+ 𝛽2𝓍2 + 𝛽3𝓍3+…+ 𝛽𝔫𝓍𝔫+ℰ

Q-Time
Q-Time
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What machine learning does (e.g. ”Random Forest”)
Your Data Sheet to Explore

y

𝑥02

x08

x02

x11 x14

x05

[1] Equation: y = 𝑓(𝑥01, 𝑥02, 𝑥03 … … . 𝑥𝑖), where 𝑖 is the number of explanatory variables

[2] Randomly select 𝑥 parameters starting from 𝑥02 

[3] Change Point Detection – identify the point where the mean gap in y is maximized

[4] Node Assignment – change point is set as “node” and x data is split into two groups [5] 

Recursive Splitting - repeat step 3 within each group to find additional nodes

[6] If 𝑥08 is selected as relevant, then the node based on 𝑥08 is considered truly predictive

• A truly correlated variable tends to show a relatively large mean gap

• The model may not provide an exact value but provides reliable estimate of mean

• A decision tree that includes 𝑥08 as a node should demonstrate better predictive 

performance than one without it

> 4≤ 4

y

𝑥08

Machine Learning

y x01 x02 x03 x04 x05 x06 x07 x08 x09 x10 x11 x12 x13 x14 x15

7 1

10 2

13 3

16 4

19 5

22 6

25 7

28 8

31 9

34 10

37 11

40 12

43 13

46 14

49 15

~25

~10

~25~10
Example continues in next slide
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Random Forest to find highly correlated parameter

[7] Repeat [2] to [5] to create multiple 

trees to form a “forest” 

The forest and/or trees with node of 

relevant variable have better predictability 

at the terminals on “y”

Key Points

• The flow presumes no assumption on 

data distribution

• Evaluate all parameters and data 

points with equal importance

• Requires extensive and repetitive 

calculations to build the decision tree 

and reach converge for identifying key 

parameters

• Dependent on high-performance 

computing resource

Machine Learning

Node by relevant variable

Node of irrelevant indicator

Terminal
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Machine Learning transforms data analysis

• In memory manufacturing, massive number of parameters 

are controlled and understood

– 𝑌 = 𝑓(𝑋1, 𝑋2, 𝑋3 … … … . 𝑋𝑛) 

–Where n can be hundreds to thousands per parameter 

Y of interest

– n becomes larger and larger as technology node 

advances

• Break limitation of deterministic modeling

– Remove subjective interpretation by human

- Regression model

- Statistical Distribution of data

- Physical fundamental formula

• Explore key features from data 

– Nonparametric approach with no presumed model

– Focus on feature engineering

– Use data to explain what is happening

~5000 parameters 

from photolithography

Lens system

Reticle (Mask)

Light Source

Photoresist
Film Stack

∇ × 𝐷 = 𝜌𝑣

∇ × 𝐵 = 0

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡
+ 𝐽

𝑑𝑈 = 𝑇𝑑𝑠 − 𝑝𝑑𝑉 + ෍

𝑖

𝜇𝑖𝑑𝑁𝑖
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𝑖

𝜇𝑖𝑑𝑁𝑖

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 + ෍

𝑖

𝜇𝑖𝑑𝑁𝑖
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Machine Learning vs. Traditional Statistics

• Expectations for Machine Learning in manufacturing are very high

• However, manufacturing engineers are deeply rooted in p-value based 

statistical methods

– p-value ( p < 0.05) based judgement has long served as backbone for 

process validations/still common language to make assertive decision in 

manufacturing

• Yet advanced statistical & nonparametric approach does exist

• Statistical approach and machine learning have been co-existing and 

utilized in hybrid mode in the field

0
.0

0
.1

0
.2

0
.3

0
.4

-3σ -2σ -1σ 0σ 1σ 2σ 3σ

0.1%
2.1% 2.1%

0.1%13.6% 13.6%

34.1% 34.1%

Traditional Statistics approach

Machine Learning approach
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Generative AI (Gen AI)

• Definition:

– Generative AI - commonly known as Gen AI - refers 

to artificial intelligence systems capable of creating 

new content—such as text, images, audio, or 

code—based on patterns learned from existing 

data.

• How It Works:

– Gen AI models are trained on large datasets 

using ​deep learning architectures, often involving 

transformers and Large Language Models (LLMs) 

for text-based tasks. These models generate 

outputs that closely resemble human-created 

content.

• Examples:

– Text generation

– Image synthesis

– Code generation

https://www.micron.com/about/micron-glossary/generative-ai

• Prompt engineering:

– The process by which humans interact with generative 

AI, crafting, and refining queries to ensure the models 

understand and respond effectively.

• Some Gen AI use cases to get started:

– Can help write better emails

- Prompt example: “Rewrite this email for clarity. Use 

professional tone.”

– Identifying action items from an email or meeting

- Prompt example: “List action items from all emails I 

received in the last week.”

– Planning a trip

- Prompt example “I will be traveling for work for 3 

weeks to Hiroshima, Japan in March. Provide two 

weekend itineraries to learn about the culture.”

https://www.micron.com/about/micron-glossary/deep-learning
https://www.micron.com/about/micron-glossary/large-language-models
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/generative-ai
https://www.micron.com/about/micron-glossary/prompt-engineering
https://www.micron.com/about/micron-glossary/prompt-engineering
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Data in memory 
manufacturing

Image created for Micron by Copilot
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Micron delivers a broad portfolio of memory and storage

Memory Storage

High-bandwidth 

memory (HBM), 

and graphics 

memory (GDDR)

solutions

Low-power DRAM 

and DRAM

Multichip

packages

(DRAM and

NAND)

Solid-state drives 

(SSD)

Flash storage 

(NAND and NOR)

Examples of Micron 

portfolio products
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DRAM Memory Cell

To store 1/0 bit

DRAM

products

IO

Controller

WriteRead

Speed？

Timing ?

How many 

bits working ?

Let’s explore DRAM Memory

• Billions of DRAM memory cells, each with a transistor and a capacitor, store binary information in the form of a 1 or a 0.

– The transistor acts as a switch (turns on or turns off) to allow access to the capacitor 

– To store a “0” on the capacitor, 0 volts are sent to the capacitor

– To store a '1' on the capacitor, a higher voltage is sent to the capacitor (e.g., 1 volt) 

• Additional peripheral circuitry reads and writes the binary data to individual cells.

• To learn more about what is semiconductor Memory, types of Memory, and how they work please refer to the Intro to 

Memory module: https://www.micron.com/educatorhub/courses/intro-to-memory

C
a
p
a
c
it
o
r

Transistor

DRAM

• Dynamic

• Random

• Access

• Memory

https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-memory


24

Where does the data come from within DRAM?

C
a

p
a

c
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(C
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IO

Controller

C
a
p
a
c
it
o
r

Transistor

Transistor

C
a
p

a
c
it
o

r

This is a digital 

composite image, not 

a real SEM image 

(Scanning Electron 

Microscopy).
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Proportional accuracy

The 300mm diameter wafer stops within 2nm accuracy in

X, Y and Z directions in some photolithography tools, and each 

layer needs to be aligned precisely (overlay) with prior layers.

A 400m long bullet train with multiple cars would have 

to stop within a 2.6μm precision (less than the width of 

a human hair) at a platform to match the precision of 

the photolithography tool! (Note: the precision of a real 

train is a few centimeters).

X

y

z

Photoresist

Lens

Source 

Light

Reticle

Film stack

Silicon

X

y

z

Photolithography Tool

Photolithography 

schematic

2 𝑛𝑚

300 𝑚𝑚
 =

2.6 𝑢𝑚

400 𝑚
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Proportional aspect ratio

AR for a DRAM capacitor cylinder ~50!

Aspect Ratio (AR) = 

height/width

width

h
e
ig

h
t

AR for the Tokyo Skytree ~ 10

634 𝑚𝑒𝑡𝑒𝑟𝑠 (~2080 𝑓𝑒𝑒𝑡)

68 𝑚𝑒𝑡𝑒𝑟𝑠 (~223 𝑓𝑒𝑒𝑡)

5 Tokyo 

Skytree 

buildings!

An example from 

Japan:
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Aspect ratio for DRAM 

capacitor cylinder ~50!
Aspect ratio 

Washington 

Monument ~10

Proportional aspect ratio

555 ft

55.5 ft

5 Washington 

Monuments!

An example from 

the United States:

Aspect Ratio (AR) = 

height/width

width

h
e
ig

h
t

Washington Monument, Washington DC
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How small is the nanometer scale

It is difficult to imagine the nanometer scale. 

Let’s say that a DRAM line width is 

approximately 15 nm. If we compare the line 

width to a 300 mm diameter wafer… 

…that is similar to comparing a 0.5 mm line from a 

mechanical pencil to 10 kilometers, which is the 

distance from Shinagawa to Ikebukuro station in Tokyo!

300 mm diameter wafer

15 𝑛𝑚

300 𝑚𝑚
 =

0.5 𝑚𝑚

10 𝑘𝑚

~10 km (6.2 miles) is the distance from 

Shinagawa Station to Ikebukuro Station
0.5 mm mechanical pencil lead

Yamanote subway map in Tokyo
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Data in Semiconductor manufacturing

Wafer probe map

Parametric Testing
Testing of electrical parameters from the 

different components of the circuits involves 

hundreds of tests (and test results) per 

wafer

Probe Testing
Wafer Yield: good die / all die

Involves hundreds of tests (and test results) 

on each die

Prime Data
• Data that has immediate impact to yield 

& quality of products

• Collected inline & real time during 

manufacturing

• Semiconductor industry has used “Big 

Data” for decades

• Here are some examples

Equipment Sensor
Sensor data collected during wafer 

processing

Equipment History
❑ Which equipment processed a wafer at 

a specific process step?

❑ When was preventive maintenance 

done on the equipment? 

Critical Dimensions
Line & Space, thickness, depth

Defects

Number of particles, unwanted shape
SPC (Statistical Process Control)
Any issues or trends seen in the data?

𝐼

𝑉
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Other data in Semiconductor manufacturing
IoT evolution 
IoT: Internet of Things

Has enabled additional 

equipment/processing data collection

Potentially impact yield & quality

Equipment Parts
Transport robot

Vacuum pump

Overhead Hoist 

Transport 
Real time location

and routing, 

congestion monitor

Utility
Electrical power supply, gas supply, air 

condition

Clean Room 

Environment 
Humidity, temperature, 

airborne molecular 

contamination

Weather
Temperature, humidity,

 lighting

Environment

Facility

Manufacturing 
Line

Manufacturing 
equipment

IOT = “Internet of Things”
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Priorities in Memory Manufacturing

Yield

Make it functional

Quality

Make better 

Cycle Time

Make faster

Cost

Spend less

This data has been produced solely for educational purposes and does not represent real Micron data.

Data shown in previous slides is analyzed to optimize these key priorities
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Environment

Facility

Clean 
room

Equipment

Big Data/AI integration in semiconductor industry

Digital Twin Virtual Fab 

enables virtual fab-wide 

experiment without 

physical impact

Real Fab

Drive Yield/Quality

Cost/Cycle Time improvement

New data
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Data Science 
Roles and Team 
Dynamics
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How Data Science Team is formed

Data Science Knowledge Stack 

Domain Expertise

Data Science Methods

Data Science Tools & Libraries

Programming Language

Data Access & Transformation

Database Technology

Business/Finance/Supply Chain

Engineering/Factory/Medical

Mathematics/Statistics/Machine 

Learning/Visualization

Tensor Flow/Sickit-Learn/Tidyverse

Python/R/Java/C++

SQL DB/non-SQL DB/inMemory/File 

Format

Extract/Transform/Streaming

Network/Security
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Data Science Dynamics: 
Skills/Tools Coverage 

ML coding proficiency

Python, R, etc.

Relational 

database

Tensor 

Flow

Scikit-

Learn

Domain Expertise

Data Science 

Data Engineering
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Fab Equipment Equipment / sensors / IofT

Robots Fabrication process from wafer to product

Wafer bitmaps Wafer probe maps

Data 

streaming

API 

development

Data extraction/

data joining

Database 

architecture

Data 

visualizationMachine 

learning
Metrology measurements
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Dynamics of Data Science Project

How Data Science Project is Executed

Data Scientist

Business 

Process Analyst

Technology 

Development 

Engineers

Manufacturing 

Engineers

Data Engineer

UI Engineer 

Integrated

Solution 
Productization

 

Domain Knowledge Driven

IT Skill & Knowledge Driven

Request

Needs
Prototype
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Prerequisite for Data Science in memory manufacturing

• Can you tell how DRAM memory stores single bit “0/1” information?

–Hint: Can use Micron Educator Hub to learn more, e.g., Intro to Memory

• Can you tell how DRAM memory is made?

–Hint: Can use Micron Educator Hub to learn more, e.g., Intro to Fabrication

• Can you tell how small an advanced transistor is?

–Hint: in the nanometer scale!

• Can you tell why overlay in photolithography is important?

–Hint: why is alignment between layers important?

Domain 

knowledge

https://www.micron.com/educatorhub/courses/intro-to-memory
https://www.micron.com/educatorhub/courses/intro-to-fabrication
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Prerequisite for Data Science Continued

• Can you explain the difference between mean and median?

–Hint: what if data distribution is skewed? What if there is excursion point?

• Can you explain difference between supervised and unsupervised learning?

–Hint: e.g. learning with labeled data for learning and prediction -> supervised y=f(x) 

• Can you explain the concept of statistical significance?

–Hint: t-test, ANOVA,  p<0.05

• Can you provide examples of IoT?

–Hint: devices to collect image/sound/temperature, etc.

• Can you provide examples of tools or methods that can be used for data 

visualization? 

–Hint: scatter plot, histogram, box plot, contour map

Data 

Science 

knowledge
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Prerequisite for Data Science continued

• Can you develop analytical scripts with Python and/or R?

–Example: print (‘Hello World’) in Python

• Can you extract data from a database using SQL?

–Example:  “select * from data_table”

• Can you create an interactive user interface (UI) and what tools can you 

use to do so?

–Hint: Tableau, FLASK for more interactive UI
IT skills & 

knowledge
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Integrating Data Science Jigsaw Puzzle Pieces into One

Problem

Statement
Algorithm

Statistics

Data 

Sourcing

Visualization

User Interface

Integrated 

DS (Data Science) Solution

Image created for Micron by Adobe Firefly
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Case Studies

Image created for Micron by Copilot
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Case Study: Wafer Map Analytic

• Each memory die on wafer is electrically tested

–  Check every die functionality to ensure it is sellable to customer

• A Wafer Map is generated with the test results. Each die is represented by a rectangle in 

the wafer map. Colors and codes may be used in the map to represent a good die or a 

bad die. Bad die are further sub-categorized depending on the specific failing test. 

• You may see “signatures” which may help identify what caused the functional failure

• The “signature” may help process engineers diagnose the reason for the failure or root 

cause

• Highly dimensional data

– Product ID: specific type of device

– Lot ID: unique identifier assigned to a group of wafers that are processed together 

through various stages of fabrication

–Wafer ID: unique identifier assigned to a wafer in a lot

– Die location (x,y): specific position of die on wafer

– VALUE

Wafer Map 

Domain 

knowledge

This data has been produced solely for educational purposes and does not represent real Micron data.

Scratch?

Image created for Micron by Copilot
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Electrical Functional Test Flow

Probe Tests -> hundreds of tests to validate capacitors correctly store 1s and 

0s: includes data reads and writes 

Test 

characterization 

data

Repair Pass or Failure

Tester estimates if the die 

can be repaired with the 

existing redundant elements.

If the die is found to be 

repairable then mark as 

“pass” otherwise, “fail”

Data to be 

collected

Note: Redundant or spare rows and columns are manufactured in each DRAM die to replace non-functioning rows and columns.  

Domain 

knowledge

This data has been produced solely for educational purposes and does not represent real Micron data.

Fails can be categorized 

into different fail types.

Probe test algorithm 

determines how to 

‘Repair’ (implementing 

‘redundant’ elements built 

into the die). 

1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0

1 1 1 1 0 1 0 1 1

1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1

Redundant

columns

This good redundant 

column is used to replace 

the column with two fails
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Wafer Map of Probe Test Data: Bit Map

• Bit Map

– Fails can be categorized into different fail 

types, e.g., single bit, double bit, column/row

– Fails can also be visualized in a bit map

– Fail data can be used to determine how to 

repair using redundant elements built into the 

die. 

– Data level: 

- Lot level data (5-25 wafers per lot) (e.g., 

wafer level average)

- Wafer level data (e.g., fail count per wafer)

- Die level data (e.g., fail count per die)

Die

This data has been produced solely for educational purposes and does not represent real Micron data.

Domain 

knowledge

Low fail count High fail count

Summary of fails

Single bit fails

Double bit fail

Row fail

Column fails
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Wafer Map of Probe Test Data: Repair Density

• Repair Density

– How many repair elements were used to repair fails found 

during testing

– Data levels: 

- Lot level data (e.g., wafer average repair count)

- Wafer level data (e.g., die average repair count)

- Die level data (e.g., repair count per die)

Less

Domain 

knowledge

This data has been produced solely for educational purposes and does not represent real Micron data.

More

Low repair 

count

High repair 

count
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Wafer Map of Probe Test Data: Fail Bin

• Fail Bin

– The probe testing consists of a series of tests, each with 

specific conditions that test different circuit functionality

– Each test has a name and an associated color and character

- For example, if a test finds open contacts that are not 

repairable, the die fails to Bin O, and the wafer map will 

show the die in orange color. 

– Data: Symbolic e.g., character/color per die

– High Level Summary of fail mode of the die
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This data has been produced solely for educational purposes and does not represent real Micron data.
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Wafer Map by resolution of the data 

Fail Bin MapBit Map Repair Density

Rich Information on yield/quality improvement opportunity

High Level Summary e.g., Yield 

This data has been produced solely for educational purposes and does not represent real Micron data.

Domain 

knowledge
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Problem statement

• Semiconductor Fabs produce a remarkably 

high volume of wafer outs daily—often in the 

hundreds or even thousands.

• Within this output, some 'signatures' may 

emerge, warranting further investigation

• Given time constraints, how would you 

efficiently classify or group these wafers to 

enable meaningful analysis?"

Problem

Statement

48
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Wafer Map Classification by Human

• A Micron engineer in the Yield Enhancement 

Group was asked to monitor & summarize bit 

map of “pizza slice” signature issue every two 

weeks.

• The engineer has to look at the “wafer map” for 

hundreds of wafers individually, to find which 

wafers have such “pizza slice” signature. This 

takes the engineer about 5 hours every two 

weeks.

Problem

Statement

Outcome

- Only three levels (high occurrence, some occurrence, little occurrence)

- The result can be subjective

- Less quantitative

- May not be reproducible if other persons do the same work

This data has been produced solely for educational purposes and does not represent real Micron data.

Week 5 – Week 6:    X    High occurrence

Week 7 – Week 8:    ✓    Little occurrence 

Week 9 – Week 10:  ✓    Little occurrence

Week 11 – Week 12:  Δ   Some occurrence
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Wafer Map Analysis  Data vs. Algorithm

Data Data Type Analytic Approach

Bit Map Summary Numeric

Numeric clustering algorithm

e.g. K-mean

Expectation Maximize

Repair Density Numeric

Numeric clustering algorithm

e.g. K-mean

Expectation Maximize

Pass & Failure Factorial (character)

Deep Learning

Autoencoder

Wafer Map to Image

Algorithm

Statistics
Algorithm

Statistics
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Wafer Map Classification Approach

Divide into 20 equal area zones

Radial & Quadrant to capture bit 

count by wafer region
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Create Data frame in either Python or R by 

transforming die level data into aggregated mean 

value by zone

 

Cluster<-kmeans(df[, 3:22], 15) 

Wafer Zone definition

 

Algorithm

Statistics

This data has been produced solely for educational purposes and does not represent real Micron data.
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Pizza SlicePizza Slice

Pizza Slice

Pizza Slice

Wafer Map Clustering

• Classification on 2000 wafers failure mode

• Visual inspection by human: Hours to a day

• By algorithm: 5 min

Integrated 

DS 

Solution

This data has been produced solely for educational purposes and does not represent real Micron data.
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Comparison of human classification vs. algorithm

Good Cluster Bad wafers

X: high occurrence

✓: little occurrence

✓: little occurrence
Δ: some occurrence

Classification by date by algorithm

Clustering algorithm offers reproducible and 

quantitative analytical results 

By human eye inspection

Integrated 

DS 

Solution

This data has been produced solely for educational purposes and does not represent real Micron data.

Week 5 – Week 6:    X

Week 7 – Week 8:    ✓    

Week 9 – Week 10:  ✓

Week 11 – Week 12:  Δ

Week 5 – Week 6:

Week 7 – Week 8:

Week 9 – Week 10:

Week 11 – Week 12:
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Further Drilldown

• Subsequent drilldown analysis of manufacturing data 

revealed a clear distinction between good wafers and 

those exhibiting 'pizza slice’ signature, which were 

linked to a specific process step and equipment

• This insight guided process engineers to take 

targeted corrective actions

• With continued investigation, the findings can evolve 

into prescriptive guidance, offering actionable 

solutions to resolve the underlying issue.

→ Prescriptive result  

Integrated 

DS 

Solution

This data has been produced solely for educational purposes and does not represent real Micron data.

Good 

Wafers

Bad Wafers 

(pizza slice)
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Summary on Wafer Map 
Signature Analysis

• Clustering algorithm automated manual cognitive work by 

human

• Visually identifies possible root cause of quality 

degradation

• The outcome is objective, robust and more reproducible 

than human classification

• With further drilldown the result can be prescriptive and 

provide actionable results for process engineers to fix the 

problem

55
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Summary & Conclusion

• Catalyst for Big Data & AI in Smart Manufacturing 

– Enabled by highly scalable computing, advanced 
machine learning algorithms, and ultra-high bandwidth 
IoT networks

• Essential Role of Data in Memory Manufacturing

– Characterized by extremely small, precise dimensions 

requiring meticulous data handling

• Dynamics of Data Science

– Domain knowledge is vital for meaningful insights and 
effective application 

• Real-World Application

–Wafer Map Analytics is reviewed as a case study for 
improving yield and quality—illustrating typical analytics 
practices in semiconductor manufacturing

56
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Key Terminology
Glossary
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Glossary

Term or acronym Definition/description

AI Artificial Intelligence

AR Aspect Ratio

Big Data Large and complex data sets that require advanced methods and technologies to store, process, and analyze.

Capacitance The ability of a system to store an electric charge, measured in farads.

Critical Dimension The specific width or space between features on a semiconductor wafer that must be controlled precisely during manufacturing.

Data Science
The field of study that combines domain expertise, programming skills, and knowledge of mathematics and statistics to extract meaningful 

insights from data.

Defect An imperfection or anomaly in a semiconductor wafer that can affect the performance of the final product.

DRAM Memory Cell A cell in DRAM that consists of one transistor and one capacitor where the capacitor can store binary information (1/0).

DRAM Dynamic Random Access Memory, a type of fast memory used in computers and other devices to store data temporarily.

IoT
Internet of Things. A network of physical devices embedded with sensors, software, and other technologies that enable them to collect, exchange, 

and act on data over the Internet.

Machine Learning
A subset of artificial intelligence that involves the use of algorithms and statistical models to enable computers to perform tasks without explicit 

instructions.

Parametric Data Data that is measured and collected based on specific parameters or characteristics.

Probe The process of testing semiconductor wafers to identify functional and non-functional die.

SQL Structured Query Language

Transistor A semiconductor device used to amplify or switch electronic signals and electrical power.

Yield The number of good die produced divided by the total number of die on a wafer.
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