DDR SDRAM UDIMM

MT8VDDDF6464A - 512MB

For component data sheets, refer to Micron’s Web site: www.micron.com

Features
- 184-pin, unbuffered dual in-line memory module (UDIMM)
- Fast data transfer rates: PC2700, or PC3200
- 512MB (64 Meg x 64)
- \(V_{DD} = V_{DDQ} = 2.5V \) (-40B: \(V_{DD} = V_{DDQ} \))
- \(V_{DDSPD} = 2.3-3.6V \)
- 2.5V I/O (SSTL_2-compatible)
- Internal, pipelined double data rate (DDR) architecture; 2n-prefetch architecture
- Bidirectional data strobe (DQS) transmitted/received with data—that is, source-synchronous data capture
- Differential clock inputs (CK and CK#)
- Multiple internal device banks for concurrent operation
- Single rank
- Selectable burst lengths (BL): 2, 4, or 8
- Auto precharge option
- Auto refresh and self refresh modes: 7.8125\(\mu \)s maximum average periodic refresh interval
- Serial presence-detect (SPD) with EEPROM
- Selectable CAS latency (CL) for maximum compatibility
- Gold edge contacts

Options
- Operating temperature\(^1\)
 - Commercial \((0^\circ C \leq T_A \leq +70^\circ C) \)
 - None
- Package
 - 184-pin DIMM (lead-free)
 - Y
- Memory clock, speed, CAS latency
 - -40B: 5.0ns (200 MHz), 400 MT/s, CL = 3
 1. Contact Micron for industrial temperature module offerings.

Marking
- -40B

Table 1: Key Timing Parameters

<table>
<thead>
<tr>
<th>Speed Grade</th>
<th>Industry Nomenclature</th>
<th>Data Rate (MT/s)</th>
<th>(t^{RCD}) (ns)</th>
<th>(t^{RP}) (ns)</th>
<th>(t^{RC}) (ns)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40B</td>
<td>PC3200</td>
<td>CL = 3</td>
<td>15</td>
<td>15</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL = 2.5</td>
<td>15</td>
<td>15</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL = 2</td>
<td>18</td>
<td>18</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The values of \(t^{RCD} \) and \(t^{RP} \) for -335 modules show 18ns to align with industry specifications; actual DDR SDRAM device specifications are 15ns.
Table 2: Addressing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>512MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh count</td>
<td>8K</td>
</tr>
<tr>
<td>Row address</td>
<td>8K A[12:0]</td>
</tr>
<tr>
<td>Device bank address</td>
<td>4 BA[1:0]</td>
</tr>
<tr>
<td>Device configuration</td>
<td>512Mb (64 Meg x 8)</td>
</tr>
<tr>
<td>Column address</td>
<td>2K A[11, 9:0]</td>
</tr>
<tr>
<td>Module rank address</td>
<td>1 (S0#)</td>
</tr>
</tbody>
</table>

Table 3: Part Numbers and Timing Parameters - 512MB

Base device: MT46V64M8, 1 512Mb DDR SDRAM

<table>
<thead>
<tr>
<th>Part Number2</th>
<th>Module Density</th>
<th>Configuration</th>
<th>Module Bandwidth</th>
<th>Memory Clock/ Data Rate</th>
<th>Clock Cycles (CL-1RCD-1RP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT8VDDF6464AY-40B__</td>
<td>512MB</td>
<td>64 Meg x 64</td>
<td>3.2 GB/s</td>
<td>5.0ns/400 MT/s</td>
<td>3-3-3</td>
</tr>
</tbody>
</table>

Notes:
1. Data sheets for the base devices can be found on Micron’s Web site.
2. All part numbers end with a two-place code (not shown) that designates component and PCB revisions. Consult factory for current revision codes. Example: MT8VDDF6464AY-40B[1].
Pin Assignments and Descriptions

Table 4: Pin Assignments

<table>
<thead>
<tr>
<th>Pin Assignments and Descriptions</th>
<th>184-Pin DDR UDIMM Front</th>
<th>184-Pin DDR UDIMM Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Symbol</td>
<td>Pin</td>
</tr>
<tr>
<td>1</td>
<td>VREF</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>DQ0</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>VSS</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>DQ1</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>DQS0</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>DQ2</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>VDD</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>DQ3</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>VSS</td>
<td>34</td>
</tr>
<tr>
<td>12</td>
<td>DQ8</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>DQ9</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>DQS1</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>VDDQ</td>
<td>38</td>
</tr>
<tr>
<td>16</td>
<td>CK1</td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td>CK1#</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>VSS</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>DQ10</td>
<td>42</td>
</tr>
<tr>
<td>20</td>
<td>DQ11</td>
<td>43</td>
</tr>
<tr>
<td>21</td>
<td>CKE0</td>
<td>44</td>
</tr>
<tr>
<td>22</td>
<td>VDDQ</td>
<td>45</td>
</tr>
<tr>
<td>23</td>
<td>DQ16</td>
<td>46</td>
</tr>
<tr>
<td>93</td>
<td>VSS</td>
<td>116</td>
</tr>
<tr>
<td>94</td>
<td>DQ4</td>
<td>117</td>
</tr>
<tr>
<td>95</td>
<td>DQ5</td>
<td>118</td>
</tr>
<tr>
<td>96</td>
<td>VDDQ</td>
<td>119</td>
</tr>
<tr>
<td>97</td>
<td>DQ9</td>
<td>120</td>
</tr>
<tr>
<td>98</td>
<td>DQ6</td>
<td>121</td>
</tr>
<tr>
<td>99</td>
<td>DQ7</td>
<td>122</td>
</tr>
<tr>
<td>100</td>
<td>VSS</td>
<td>123</td>
</tr>
<tr>
<td>101</td>
<td>NC</td>
<td>124</td>
</tr>
<tr>
<td>102</td>
<td>NC</td>
<td>125</td>
</tr>
<tr>
<td>103</td>
<td>NC</td>
<td>126</td>
</tr>
<tr>
<td>104</td>
<td>VDDQ</td>
<td>127</td>
</tr>
<tr>
<td>105</td>
<td>DQ12</td>
<td>128</td>
</tr>
<tr>
<td>106</td>
<td>DQ13</td>
<td>129</td>
</tr>
<tr>
<td>107</td>
<td>DQS10</td>
<td>130</td>
</tr>
<tr>
<td>108</td>
<td>VDD</td>
<td>131</td>
</tr>
<tr>
<td>109</td>
<td>DQ14</td>
<td>132</td>
</tr>
<tr>
<td>110</td>
<td>DQ15</td>
<td>133</td>
</tr>
<tr>
<td>111</td>
<td>NC</td>
<td>134</td>
</tr>
<tr>
<td>112</td>
<td>VDDQ</td>
<td>135</td>
</tr>
<tr>
<td>113</td>
<td>NC</td>
<td>136</td>
</tr>
<tr>
<td>114</td>
<td>DQ20</td>
<td>137</td>
</tr>
<tr>
<td>115</td>
<td>A12</td>
<td>138</td>
</tr>
</tbody>
</table>
Table 5: Pin Descriptions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A[12:0]</td>
<td>Input</td>
<td>Address inputs: Provide the row address for ACTIVE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective device bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one device bank (A10 LOW, device bank selected by BA[1:0]) or all device banks (A10 HIGH). The address inputs also provide the opcode during a MODE REGISTER SET command. BA[1:0] define which mode register (mode register or extended mode register) is loaded during the LOAD MODE REGISTER command.</td>
</tr>
<tr>
<td>BA[1:0]</td>
<td>Input</td>
<td>Bank address: BA[1:0] define the device bank to which an ACTIVE, READ, WRITE, or PRECHARGE command is being applied.</td>
</tr>
<tr>
<td>CK[2:0]</td>
<td>Input</td>
<td>Clock: CK and CK# are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. Output data (DQ and DQS) is referenced to the crossings of CK and CK#.</td>
</tr>
<tr>
<td>CKE0</td>
<td>Input</td>
<td>Clock enable: CKE enables (registered HIGH) and disables (registered LOW) the internal clock, input buffers, and output drivers.</td>
</tr>
<tr>
<td>DQS[16:9]</td>
<td>Input</td>
<td>Input data mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH, along with that input data, during a write access. DM is sampled on both edges of DQS. Although DM pins are input-only, the DM loading is designed to match that of DQ and DQS pins.</td>
</tr>
<tr>
<td>RAS#, CAS#, WE#</td>
<td>Input</td>
<td>Command inputs: RAS#, CAS#, and WE# (along with S#) define the command being entered.</td>
</tr>
<tr>
<td>S0#</td>
<td>Input</td>
<td>Chip selects: S# enables (registered LOW) and disables (registered HIGH) the command decoder.</td>
</tr>
<tr>
<td>SA[2:0]</td>
<td>Input</td>
<td>Presence-detect address inputs: These pins are used to configure the SPD EEPROM address range on the I2C bus.</td>
</tr>
<tr>
<td>SCL</td>
<td>Input</td>
<td>Serial clock for SPD EEPROM: SCL is used to synchronize the presence-detect data transfer to and from the module.</td>
</tr>
<tr>
<td>DQ[63:0]</td>
<td>I/O</td>
<td>Data input/output: Data bus.</td>
</tr>
<tr>
<td>DQS[7:0]</td>
<td>I/O</td>
<td>Data strobe: Output with read data. Edge-aligned with read data. Input with write data. Center-aligned with write data. Used to capture data.</td>
</tr>
<tr>
<td>SDA</td>
<td>I/O</td>
<td>Serial data: SDA is a bidirectional pin used to transfer addresses and data into and out of the presence-detect portion of the module.</td>
</tr>
<tr>
<td>VDD/VDDQ</td>
<td>Supply</td>
<td>Power supply: 2.5V ±0.2V (-40B: 2.6V ±0.1V)</td>
</tr>
<tr>
<td>VDDSPD</td>
<td>Supply</td>
<td>SPD EEPROM power supply: 2.3–3.6V.</td>
</tr>
<tr>
<td>VREF</td>
<td>Supply</td>
<td>SSTL_2 reference voltage (VDD/2).</td>
</tr>
<tr>
<td>VSS</td>
<td>Supply</td>
<td>Ground.</td>
</tr>
<tr>
<td>NC</td>
<td>–</td>
<td>No connect: These pins are not connected on the module.</td>
</tr>
<tr>
<td>NF</td>
<td>–</td>
<td>No function: These pins are connected on the module, but provide no function.</td>
</tr>
</tbody>
</table>
Functional Block Diagram

Figure 2: Functional Block Diagram

- **DQ0** to **DQ31**
- **DQS0** to **DQS16**
- **CK0#** to **CK2#**
- **U1** to **U8**
- **VREF**
- **VDD/VDDQ**
- **ADDR**: A[12:0], RAS#, CAS#, WE#, CKE0
- **BA[1:0]**
- **SPD EEPROM**
- **DDR SDRAM**
- **SDRAM**
- **BA[1:0]: DDR SDRAM**
- **A[12:0]: DDR SDRAM**
- **RAS#: DDR SDRAM**
- **CAS#: DDR SDRAM**
- **WE#: DDR SDRAM**
- **CKE0: DDR SDRAM**
- **SPD EEPROM**
- **DDR2 SDRAM**
- **DDR2 SDRAM**
- **DDR2 SDRAM**

Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2012 Micron Technology, Inc. All rights reserved.
General Description

The MT8VDDF6464A is a high-speed, CMOS dynamic random access 512MB memory module organized in x64 configuration. This module uses 512Mb DDR SDRAM devices with 4 internal banks.

DDR SDRAM modules use a double data rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n-prefetch architecture with an interface designed to transfer 2 data words per clock cycle at the I/O pins. A single read or write access for DDR SDRAM modules effectively consists of a single 2n-bit-wide, one-clock-cycle data transfer at the internal DRAM core and 2 corresponding n-bit-wide, one-half-clock-cycle data transfers at the I/O pins.

A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the DDR SDRAM during READs and by the memory controller during WRITEs. DQS is edge-aligned with data for READs and center-aligned with data for WRITEs.

DDR SDRAM modules operate from differential clock inputs (CK and CK#); the crossing of CK going HIGH and CK# going LOW will be referred to as the positive edge of CK. Control, command, and address signals are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK.

Serial Presence-Detect Operation

DDR SDRAM modules incorporate serial presence-detect. The SPD data is stored in a 256-byte EEPROM. The first 128 bytes are programmed by Micron to identify the module type and various DDR SDRAM organizations and timing parameters. The remaining 128 bytes of storage are available for use by the customer. System READ/WRITE operations between the master (system logic) and the slave EEPROM device occur via a standard I²C bus using the DIMM’s SCL (clock) and SDA (data) signals, together with SA[2:0], which provide 8 unique DIMM/EEPROM addresses. Write protect (WP) is connected to VSS, permanently disabling hardware write protect.
Electrical Specifications

Stresses greater than those listed in Table 6 may cause permanent damage to the module. This is a stress rating only, and functional operation of the module at these or any other conditions outside those indicated in each device’s data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability.

Table 6: Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD/VDDQ</td>
<td>VDD/VDDQ supply voltage relative to VSS</td>
<td>-1.0</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>VIN, VOUT</td>
<td>Voltage on any pin relative to VSS</td>
<td>-0.5</td>
<td>3.2</td>
<td>V</td>
</tr>
<tr>
<td>Ii</td>
<td>Input leakage current; Any input 0V ≤ VIN ≤ VDD; VREF input 0V ≤ VIN ≤ 1.35V (All other pins not under test = 0V)</td>
<td>-16</td>
<td>16</td>
<td>μA</td>
</tr>
<tr>
<td>IOZ</td>
<td>Output leakage current; 0V ≤ VOUT ≤ VDDQ; DQ are disabled</td>
<td>CK0, CK0#</td>
<td>-4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CK1, CK1#, CK2, CK2#</td>
<td>-6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DM</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DQ, DQ5</td>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td>TA</td>
<td>DRAM ambient operating temperature¹</td>
<td>Commercial</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial</td>
<td>-40</td>
<td>85</td>
</tr>
</tbody>
</table>

Notes: 1. For further information, refer to technical note TN-00-08: “Thermal Applications,” available on Micron’s Web site.
DRAM Operating Conditions

Recommended AC operating conditions are given in the DDR component data sheets. Component specifications are available on Micron's Web site. Module speed grades correlate with component speed grades, as shown in Table 7.

Table 7: Module and Component Speed Grades
DDR components may exceed the listed module speed grades

<table>
<thead>
<tr>
<th>Module Speed Grade</th>
<th>Component Speed Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40B</td>
<td>-5B</td>
</tr>
<tr>
<td>-335</td>
<td>-6</td>
</tr>
<tr>
<td>-262</td>
<td>-75E</td>
</tr>
<tr>
<td>-26A</td>
<td>-75Z</td>
</tr>
<tr>
<td>-265</td>
<td>-75</td>
</tr>
</tbody>
</table>

Design Considerations

Simulations

Micron memory modules are designed to optimize signal integrity through carefully designed terminations, controlled board impedances, routing topologies, trace length matching, and decoupling. However, good signal integrity starts at the system level. Micron encourages designers to simulate the signal characteristics of the system's memory bus to ensure adequate signal integrity of the entire memory system.

Power

Operating voltages are specified at the DRAM, not at the edge connector of the module. Designers must account for any system voltage drops at anticipated power levels to ensure the required supply voltage is maintained.
I_{DD} Specifications

Table 8: I_{DD} Specifications and Conditions – 512MB (Die Revision J)

Values are for the MT46V64M8 DDR SDRAM only and are computed from values specified in the 512Mb (64 Meg x 8) component data sheet.

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>-40B</th>
<th>-335</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating one bank active-precharge current:
(\overline{tRC} = \overline{tRC} \text{ (MIN)}; \overline{tCK} = \overline{tCK} \text{ (MIN)}; DQ, DM, and DQS inputs changing once per clock cycle; Address and control inputs changing once every 2 clock cycles</td>
<td>I<sub>DD0</sub></td>
<td>600</td>
<td>520</td>
<td>mA</td>
</tr>
<tr>
<td>Operating one bank active-read-precharge current:
(BL = 4; \overline{tRC} = \overline{tRC} \text{ (MIN)}; \overline{tCK} = \overline{tCK} \text{ (MIN)}; I_{O\overline{UT}} = 0\text{mA};) Address and control inputs changing once per clock cycle</td>
<td>I<sub>DD1</sub></td>
<td>680</td>
<td>600</td>
<td>mA</td>
</tr>
<tr>
<td>Precharge power-down standby current:
All device banks idle; Power-down mode; (\overline{tCK} = \overline{tCK} \text{ (MIN)}; CKE = \text{LOW})</td>
<td>I<sub>DD2P</sub></td>
<td>40</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>Idle standby current:
(CS# = \text{HIGH};) All device banks idle; (\overline{tCK} = \overline{tCK} \text{ (MIN)};) CKE = HIGH; Address and other control inputs changing once per clock cycle; (V_{IN} = V_{\text{REF}}) for DQ, DM, and DQS</td>
<td>I<sub>DD2F</sub></td>
<td>184</td>
<td>184</td>
<td>mA</td>
</tr>
<tr>
<td>Active power-down standby current:
One device bank active; Power-down mode; (\overline{tCK} = \overline{tCK} \text{ (MIN)}; CKE = \text{LOW})</td>
<td>I<sub>DD3P</sub></td>
<td>144</td>
<td>112</td>
<td>mA</td>
</tr>
<tr>
<td>Active standby current:
(CS# = \text{HIGH}; CKE = \text{HIGH};) One device bank active; (\overline{tRC} = \overline{tRAS} \text{ (MAX)}; \overline{tCK} = \overline{tCK} \text{ (MIN)}; DQ, DM, and DQS inputs changing twice per clock cycle; Address and other control inputs changing once per clock cycle</td>
<td>I<sub>DD3N</sub></td>
<td>320</td>
<td>304</td>
<td>mA</td>
</tr>
<tr>
<td>Operating burst read current:
(BL = 2;) Continuous burst reads; One device bank active; Address and control inputs changing once per clock cycle; (\overline{tCK} = \overline{tCK} \text{ (MIN)}; I_{O\overline{UT}} = 0\text{mA})</td>
<td>I<sub>DD4R</sub></td>
<td>960</td>
<td>680</td>
<td>mA</td>
</tr>
<tr>
<td>Operating burst write current:
(BL = 2;) Continuous burst writes; One device bank active; Address and control inputs changing once per clock cycle; (\overline{tCK} = \overline{tCK} \text{ (MIN)}; DQ, DM, and DQS inputs changing twice per clock cycle</td>
<td>I<sub>DD4W</sub></td>
<td>960</td>
<td>760</td>
<td>mA</td>
</tr>
<tr>
<td>Auto refresh current:
(\overline{RFC} = \overline{RFC} \text{ (MIN)})</td>
<td>I<sub>DD5</sub></td>
<td>960</td>
<td>840</td>
<td>mA</td>
</tr>
<tr>
<td>Self refresh current:
(CKE \leq 0.2\text{V})</td>
<td>I<sub>DD5A</sub></td>
<td>64</td>
<td>64</td>
<td>mA</td>
</tr>
<tr>
<td>Operating bank interleave read current:
Four device bank interleaving reads ((BL = 4)) with auto precharge; (\overline{tRC} = \overline{tRC} \text{ (MIN)}; \overline{tCK} = \overline{tCK} \text{ (MIN)};) Address and control inputs change only during active READ or WRITE commands</td>
<td>I<sub>DD7</sub></td>
<td>1840</td>
<td>1680</td>
<td>mA</td>
</tr>
</tbody>
</table>
Serial Presence-Detect

Table 9: Serial Presence-Detect EEPROM DC Operating Conditions

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{DDSPD}</td>
<td>2.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Input high voltage: Logic 1; All inputs</td>
<td>V_{IH}</td>
<td>$V_{DDSPD} \times 0.7$</td>
<td>$V_{DDSPD} + 0.5$</td>
<td>V</td>
</tr>
<tr>
<td>Input low voltage: Logic 0; All inputs</td>
<td>V_{IL}</td>
<td>1.0</td>
<td>$V_{DDSPD} \times 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>Output low voltage: $I_{OUT} = 3\text{mA}$</td>
<td>V_{OL}</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current: $V_{IN} = \text{GND}$ to V_{DD}</td>
<td>I_{LI}</td>
<td>-</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Output leakage current: $V_{OUT} = \text{GND}$ to V_{DD}</td>
<td>I_{LO}</td>
<td>-</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Standby current: $SCL = SDA = V_{DD} - 0.3\text{V}$; All other inputs = V_{SS} or V_{DD}</td>
<td>I_{SB}</td>
<td>-</td>
<td>30</td>
<td>µA</td>
</tr>
<tr>
<td>Power supply current: SCL clock frequency = 100 kHz</td>
<td>I_{CC}</td>
<td>-</td>
<td>2.0</td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 10: Serial Presence-Detect EEPROM AC Operating Conditions

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL LOW to SDA data-out valid</td>
<td>t_{AA}</td>
<td>0.2</td>
<td>0.9</td>
<td>µs</td>
<td>1</td>
</tr>
<tr>
<td>Time the bus must be free before a new transition can start</td>
<td>t_{BUF}</td>
<td>1.3</td>
<td>-</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Data-out hold time</td>
<td>$t_{HD:DAT}$</td>
<td>200</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SDA fall time</td>
<td>t_{F}</td>
<td>-</td>
<td>300</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>SDA rise time</td>
<td>t_{R}</td>
<td>-</td>
<td>300</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>Data-in hold time</td>
<td>$t_{HD:DI}$</td>
<td>0</td>
<td>-</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Start condition hold time</td>
<td>$t_{HD:STA}$</td>
<td>0.6</td>
<td>-</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Clock HIGH period</td>
<td>t_{HIGH}</td>
<td>0.6</td>
<td>-</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Clock LOW period</td>
<td>t_{LOW}</td>
<td>1.3</td>
<td>-</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>SCL clock frequency</td>
<td>t_{SCL}</td>
<td>-</td>
<td>400</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Data-in setup time</td>
<td>$t_{SU:DAT}$</td>
<td>100</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Start condition setup time</td>
<td>$t_{SU:STA}$</td>
<td>0.6</td>
<td>-</td>
<td>µs</td>
<td>3</td>
</tr>
<tr>
<td>Stop condition setup time</td>
<td>$t_{SU:STO}$</td>
<td>0.6</td>
<td>-</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>WRITE cycle time</td>
<td>t_{WRC}</td>
<td>-</td>
<td>5</td>
<td>ms</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes:
1. To avoid spurious start and stop conditions, a minimum delay is placed between $SCL = 1$ and the falling or rising edge of SDA.
2. This parameter is sampled.
3. For a restart condition or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (t_{WRC}) is the time from a valid stop condition of a write sequence to the end of the EEPROM internal ERASE/PROGRAM cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resistance, and the EEPROM does not respond to its slave address.

Serial Presence-Detect Data

For the latest serial presence-detect data, refer to Micron's SPD page: www.micron.com/SPD.
Module Dimensions

Figure 3: 184-pin DDR UDIMM

Notes:
1. All dimensions are in millimeters (inches); MAX/MIN or typical (TYP) where noted.
2. The dimensional diagram is for reference only. Refer to the JEDEC MO document for additional design dimensions.