Featured Videos

Your Innovation, Our Memory

Your Innovation, Our Memory

Emerging technologies require innovation on a whole new scale. See how we partner closely with our customers to gain unique insights about how we can optimize our memory solutions to enable your innovations—and help you change the world.

View video
Memory for Automotive

Memory for Automotive

Technology is reshaping the concept of driving. Automakers are developing countless new driver-assistance features and systems. See how Micron’s memory solutions are helping to enable these new supercomputing capabilities.

View video

About Micron

Where there's memory, there's Micron

Engineered for Innovation

For more than 30 years Micron has redefined innovation by designing, developing, and manufacturing some of the world’s most advanced technologies.

Learn more
Elpida is Now Micron

Elpida Is Now Micron

With the combined strength of our products, technology, and team members—our customers now have access to the broadest portfolio of best-in-class technology.

About the acquisition

Welcome to My Workspace!

Create an account to access these benefits:

  • Save part pages
  • Save Data Sheets and other files
  • Create folders to organize your projects
  • Share folders with colleagues
  • Organize secure documents for easy access
  • "Follow" parts to see alerts and updates

Learn more about Workspace features

Don't have an account yet? Sign up

Already have an account?   Login

My Folders

Your workspace is your area to organize and save part pages, data sheets, and links for easy access in the future. You can even start by saving some of the pages you've recently accessed below:

General FAQs Standard Page Save
My Workspace

General FAQs (6)

Does thermal information change for IT parts?
Thermal information includes temperature limits and thermal impedance values. Temperature limits do change for IT parts (TC, TJ, and TA), but thermal impedance values (θJA, θJB, and θJC) do not because thermal impedance depends primarily on the package.
My design was based on a specification stating the JTAG was relative to VDD (1.8V), but now we’ve discovered that JTAG is actually relative to VDDQ (1.5V). It’s a fairly significant board spin to change this; what do I risk by leaving the design as-is? I assume that the specification is still for VDDQ + 0.3V = 1.8V, but with CMOS parts there’s no way I can guarantee that it won’t swing past that on transitions.
Your particular board design should not be a cause of major concern. The pins can handle the VDD voltage regardless of the VDDQ voltage.
Should the ECC memory chip share chip select and CKE signals with the other two main memory chips in our point-to-point application?
The ECC chip(s) should share the same CKE and CS# as the other devices because they are accessed as the same piece of data.
What is a "bank"?
A bank is an array of memory bits. Multiple arrays or banks are contained within a DRAM component. Depending on density, DRAM components may consist of 4 or 8 banks. For example, a bank may consist of 32 million rows, 4 bits across. This would equate to 128 megabits. Four of these banks in a single DRAM component would yield a 512Mb component.
What is the impedance tolerance of the driver in match-impedance mode relative to the expected value base on the perfect reference resistor connected to ZQ pin?
The impedance tolerance of the driver is ±15 percent.
Who do I contact if I have questions about my buymicron.com order?
If you have any questions about your order, contact buymicron.com.

Bare Die FAQs (3)

Does Micron offer product in whole wafer form and singulated die?
Nearly all Micron memory die shipments are now sold as whole wafers, not singulated die (check with your local sales contact for availability). Wafer maps are provided in each wafer shipment. For more information on wafer mapping, see TN-00-21 . (For information regarding Aptina image sensor die orders, see aptina.com)
How does Micron ship bare die product?

Micron die are provided as whole wafers and are shipped in horizontal wafer shippers ("coin stacks") or vendor boxes. Customers must have a clean room environment to store and unpack Micron wafers. For more information, see PDF CSN 20: Whole Wafer Packaging.

What wafer thickness options does Micron offer?
Standard "unground" wafer thickness is 750µm for 200mm wafers and 790µm for 300mm wafers. Micron offers additional wafer thickness options for 200mm wafers, depending on the product. Please see the applicable die data sheet for die thickness options beyond the standard thickness. Depending on customer demand, Micron may consider processing alternative thicknesses. Please consult your sales representative for more information.

Sim Models FAQs (22)

Are Verilog models available for Micron modules?
Verilog models can be created for DDR, DDR2, and DDR3 modules by using a Micron-provided wrapper in conjunction with the Verilog model for the DRAM components used on the specific module you're working with. The configurable DIMM model file (ddr_dimm.v, ddr2_module.v, or ddr3_dimm.v) is included in the DRAM Verilog model .zip file download for DDR, DDR2, and DDR3 components. The readme.txt file included in the .zip provides instructions for configuring the DIMM model.
Can a parity module be used in a system that is not designed to use parity?
Micron’s modules are manufactured to be hardware-compatible with both parity and non-parity systems. Par_in (parity in) and the high order address signals have a weak (100K-ohm) pull-down resistor to stabilize the inputs from oscillating around the switch point. Err_out (parity error out) is an open drain and should be left as a true no connect unless used in a parity system. The SPD data on a parity module does reflect parity. In rare occasions, the firmware or BIOS of a non-parity system will err on the parity bit in the SPD. For this reason, the system designer should ensure that the firmware of the non-parity system expects or ignores this portion of the SPD data.
Can Micron provide models for the module connectors?
It is suggested that models for connectors be acquired from the connector manufacturers to ensure an accurate model. Micron may be able to provide a simple, uncoupled RLC connector model to be used as is or to create your own connector model. Please e-mail DRAM Support to request this model.
Can Micron provide module Gerber files to customers?
As a rule, Gerber and ODB++ files are not provided to customers, because the files contain proprietary information about our design and could be used to mass-produce our product without our consent. There is normally no reason that a customer would need Gerber files. Gerber files are provided to PCB manufacturers to mass-produce PCBs. IBIS, EBD, or board files provide enough information for customers to create models and perform signal integrity simulations.
Does Micron provide Hyperlynx models?
Micron can provide Hyperlynx models upon request for most modules. Please e-mail DRAM Support with your request and provide the complete part number of the module you are interested in. Please note, it may take up to two weeks to receive the model once your request has been acknowledged.
Does Micron provide VHDL models for modules?
Micron does not provide VHDL models for modules. We have focused our modeling resources on higher utilized modeling standards such as IBIS, Verilog, and HSPICE. However, alternatives to VHDL models are available: Denali and Synopsys both have libraries of memory components and module models available on their Web sites. These EDA packages may be an alternate way to create behavioral simulations in the absence of VHDL model. Some simulators such as ModelSim provide a dual language option (VHDL and Verilog). To simulate in this manner, a VHDL wrapper can be used around currently available Verilog models.
Does the model that I'm downloading support all the drive strengths listed in the data sheet?
To discover the model’s supported drive strengths, do the following:
- HSPICE model: Look at the .sp files for information on supported drive strengths and how to select them.
- IBIS model: Do a text search for the [Model Selector] section. This section describes the drive strengths that can be selected for a given input/output or output buffer.
How do I tell if I have the correct IBIS or HSPICE model for a given die revision indicator?
HSPICE model: Look in the readme file for die revision information.
IBIS model: Look at the top of the file for die revision information.
How does Micron validate the quality of its IBIS and HSPICE models?
To validate a model to lab measurements, Micron compares several items, such as input capacitance, power and ground clamp diode characteristics, output buffer drive strength, and output buffer slew rates. New Micron models include a quality report that compares model characteristics to lab measurements and data sheet specifications.
My simulation software does not support IBIS 4.0 and newer standards. How do I make Micron's IBIS 4.0 level model work with my IBIS 3.2-compliant simulator?
Most Micron models contain very few keywords specific to IBIS 4.0. In many cases, the model can be made IBIS 3.2-compliant with a few simple changes. First, change the [IBIS Ver] keyword to 3.2. Next, place a comment character ("|") in front of the "Vref" section under each [Model Spec] keyword. Finally, comment out each [Receiver Thresholds] section.
What advantage do dual-rank modules have over single-rank modules?
Having 2 ranks available to the memory controller is advantageous in terms of both performance and power. For example, while the controller is waiting for a 64-bit word to be available on one rank, the second 64-bit rank can be accessed. This interleaving increases the overall performance of the module. Power can also be reduced on a rank that is not in use, reducing the power consumption of the module.
What does the model revision number indicate when it changes from a 1.x level to a 2.x level?
1.x level model indicates that the model has not been correlated to any lab measurements. Typically, 1.x level models are provided for pre-silicon or pre-production devices. A 2.x level model has been correlated to lab measurements.
What is a board (.brd) file?
A board file is a complete electrical and mechanical representation of a PCB. EBD and ODB++ files are generated from board files. Board files are not to be provided to customers without an NDA since the files contain confidential and proprietary information about the module design.
What is a Gerber file?
Gerbers are files sent to PCB manufacturers to produce PCBs. Gerber is a dated term because board shops currently require ODB++ files to mass-produce PCBs. The term Gerber is used loosely. It sometimes refers to any of the files that represent the PCB’s electrical and mechanical characteristics, including EBD, ODB++, and board files. When a customer asks for Gerber files for a module, it is important to determine what specific files they really need.
What is a "rank"?
A rank typically refers to the data bus width of a system. This width is generally 64 or 72 bits. For example, if 8 components with a width of 8 bits each are mounted to a PCB, this creates a module that is 64 bits wide, enabling a 64-bit word to be read out of the module. We refer to this as a "single-rank" module. Sixteen components with a width of 8 bits each can be mounted to a PCB to form two, 64-bit-wide ranks, creating a "dual-rank" module.
What is an EBD (.ebd) file?
An EBD file is a model of a PCB used for simulations. This file describes the electrical characteristics of the pins and traces on the PCB. An EBD file used in conjunction with IBIS models of the DRAM, registers, and PLL can be used to create a model of a module.
What is an IBIS (.ibs) file?
An .ibs or IBIS file is a representation of a circuit meant to be read by a simulation application such as Cadence® Allegro® or HyperLynx®. IBIS (Input/output Buffer Information Specification) is an EIA (Electronic Industries Alliance) standard. IBIS is a text file in a specific format that represents the current versus voltage and voltage vs. time characteristics of the inputs and outputs of a circuit. IBIS models are the preferred files to provide to customers since the files do not contain any proprietary information about the internal makeup of the components. NDAs are not normally required for IBIS files.
What is the advantage of multiple banks within a component?
Memory controllers can begin an operation in one bank and perform a separate operation in a different bank while the first operation is completing. This interleaving increases the performance of the DRAM as a whole.
What is the difference between a "bank" and a "rank?"
Banks are specific to individual DRAM components and refer to sub-arrays within the DRAM component. Ranks are specific to memory modules and refer to a sub-array made of multiple DRAM components.
What makes up an IBIS model for a module?
The complete IBIS model for a module consists of several files:

1. The IBIS models of the DRAM used on that particular module
2. The IBIS models of the PLL, registers, and EEPROMs (as needed)
3. The IBIS model of the resistive parallel terminations on the PC
4. The EBD (electronic board description) file of the PCB. This file references the IBIS file of the terminations mentioned above.

Together, these files provide a complete representation of the PCB.
What trace lengths and termination values does Micron suggest I use on my memory interface?
Board designers often ask this question when they’re looking for a starting point for their CAD drawings or simulations. Because there are so many variables to consider, it is difficult to provide a "correct" answer. Clock speed, 1T or 2T timing, registered or unbuffered modules, and trace impedance are all important factors. Some controllers have on-die termination, some do not. Some controllers have two copies of the command and address bus. All of these factors can affect trace lengths and termination and can affect how acceptable signal integrity is achieved.

Micron technical notes TN-47-01, TN-47-20, and TN-46-14 can be used as a starting point, but trace length and termination must ultimately be proven by simulation and physical testing. Micron provides an online simulator for customers who do not have the expertise or resources to run simulations. The online simulator is on a secure section of Micron.com; visit the following URL to request access: www.micron.com/simulators.
Why are IBIS models for DRAM components regularly posted to micron.com but not IBIS models for modules?
We have found that it is more efficient to create module models as they are requested by our customers. If you are unable to locate the IBIS model for the module you are interested in, please e-mail your request to DRAM Support.

Serial Presence Detect FAQs (6)

Can I verify that the hexadecimal SPD values are correct?
Converting the hexadecimal value to binary and then matching it against the associated SPD byte in the appropriate JEDEC SPD specification will provide a translation of what the byte is for and how it is set.
How are SPD values determined?
Micron utilizes a proprietary application that generates SPD values for each part number based on engineer’s input and a database of rules. The rules housed within the database are carefully written to ensure that JEDEC SPD specifications are adhered to. This process ensures compatibility and consistency.
What are the JEDEC SPD specifications?
The SPD specifications for modules are determined by JEDEC. Micron uses several SPD specifications within JEDEC Standard No. 21-C to determine and generate SPD data for SDRAM, DDR, DDR2, DDR3 and FBDIMM modules. These specifications are available (if ratified) to the public at www.jedec.org. Specifications that have not yet been completed or ratified are available to JEDEC members only.
What is the acronym SPD stand for?
Serial Presence Detect
What is the SPD data used for?
The SPD data represents different electrical and physical characteristics of the module. This data is permanently stored in an electrically erasable programmable read-only memory (EEPROM) on the module. A basic input/output system (BIOS) access SPD information through the SMBus. The system BIOS can then use this data to configure the system to optimize the memory that has been installed.
What is the SPD table for?
The SPD table shows the hexadecimal values for each byte that is held in the EEPROM on each memory module.

Green Engineering FAQs (10)

Are Micron’s Pb-free products RoHS-compliant? What does 5/6 RoHS mean?

Yes. Directive 2011/65/EU (replacing the Directive 2002/95/EC), Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS), does impact Micron's semiconductor products. The purpose of this directive is to restrict the use of certain hazardous substances in electrical and electronic equipment and protect human health and the environment. Micron’s products have always been 5/6 RoHS compliant, meaning they contain Pb solder, but otherwise comply with RoHS regulations (they meet five of six stipulations). Micron’s Pb-free products are completely RoHS compliant.

Micron's RoHS compliant module level products do contain electronic parts that may use Pb for applications exempt from Directive 2011/65/EU (see Article 4, Annex 3). Please contact your sales/marketing representative for more information.

The European Commission FAQ sheet distributed under the Directorate-General Environment may serve as a formal (but not legally binding) point of reference.

Do Micron’s Pb-free products comply with China RoHS reporting requirements? Does Micron label its products with the Environmental Protection Use Period?

Micron’s Pb-free component, die, and wafer-level products do not contain any of the six substances restricted by the China RoHS. Micron’s modules may contain Pb in both not exempted and exempted EU RoHS applications (where not reliable Pb-free alternatives are available in the market).

Micron’s products are not sold directly to consumers. The EPUP and other marking and labeling requirements apply only to the products sold directly on the consumer market. For more information contact your sales/marketing representative.

*These substances are not intentionally added by Micron during the manufacturing process but can be present in trace amounts in the raw materials used to manufacture the finished products.


Is Micron aware of REACh requirements?

Micron is fully aware of product requirements coming from Regulation 2006/1907/EC, Registration, Evaluation Authorization and Restriction of Chemicals. Micron constantly monitors new additions to the Candidate List and timely verifies if any Substance of Very High Concern is used in the manufacturing processes and the potential impact on the final products. Micron is committed to provide our customers with information about substances in its products as required.

For any documentation need, please contact your sales representative.

How does Micron define green products?
In addition to being RoHS compliant, Micron's Green packages do not contain substances that have been identified as harmful to the environment or known to pose serious reliability: bromine, chlorine, antimony containing substances, and inorganic red phosphorus. These substances are not intentionally added to packaging materials such as encapsulants, die attach materials, underfill epoxies, and substrates. The maximum trace amounts of these substances allowable in Micron’s green packages are listed below.

<900 ppm Chlorine
<900 ppm Bromine
<1500 ppm Chlorine & Bromine
<900 ppm Antimony
<100 ppm Red Phosphorus

Please note that while our Pb-free and green products do not contain any intentionally added Pb, our Pb-free parts are not necessarily green, since they may contain halogen or antimony compounds.

*These substances are not intentionally added by Micron during the manufacturing process but can be present in trace amounts in the raw materials used to manufacture the finished products.
Does Micron still make parts that comply with RoHS 5/6 standards?

Yes, along with our Pb-free product line, Micron also supports RoHS 5/6 products. We recognize that certain applications are exempt from the RoHS directive.

Where can I find Micron's green and RoHS products part numbers?

Micron’s full line of RoHS compliant memory products can be found in the part list tables for each product type. To perform a quick compliance check on a single part number, use the "Part Number Search" tool. For information on green products, please contact your local Micron sales representative.

How do I get Micron's RoHS certificate of compliance?

You can find a part-specific RoHS Certificate of Compliance by navigating to the part detail page or using the main products family navigation.                       

How do Micron’s green products comply with international standards?
Micron’s green engineering program is RoHS-compliant and conforms with most of the world’s emerging environmental standards, including those in Asia and Europe.
What materials does Micron use in its Pb-free semiconductors?
  • For solder balls, Micron is replacing tin-lead alloys (Sn36Pb2Ag or Sn37Pb ) with a tin (Sn), silver (Ag), and copper (Cu) alloys (e.g., SAC105, SAC305, SAC405, LF35).
  • For solder paste on modules, Micron is replacing Sn37Pb with Sn3.8Ag0.7Cu.
  • For leaded TSOP, Micron is replacing 90Sn10Pb with matte Sn plating.

These substitutions ensure Micron’s Pb-free parts are RoHS-compliant. Parts are certified for a surface mount temperature of 260°C.

When will Micron complete its transition from Pb-free to green products?
Micron can currently provide Pb-free and green product to customers who require it. The availability of these products is highly dependent on customer demand, as well as on the availability of "green" non-memory components and materials.

Please contact your local Micron sales representative for more information (look up regional sales representatives on the How To Buy page).

Micron FAQs (5)

How do I create a Micron profile?
To register for a micron.com account, click the "Sign up" link in the header bar on any micron.com page.

1. Type your current email address in the Email Address and Confirm email fields.
2. Click Submit. The Create a new Account page displays.
3. Complete the required fields (designated with an asterisk) and click Submit. The email Verification Pending notification page displays. Instructions to verify your email address will be sent to the email address you used to create your micron.com profile.
4. From the body of your confirmation email, click the link provided. The My Micron Account Creation Complete page displays, notifying you that your micron.com registration is complete. The page will redirect you to the My Micron login page.

Note: If you have trouble, turn off any spam-blocking software and try the form again. Spam-blockers can sometimes mistakenly block the confirmation email message.

Password Tips
• Use only lowercase alphanumeric characters
• Use a minimum of six (6) characters, but no more than sixteen (16)
• Don't use special characters, such as *, &, %, ¢, >, @
• Don't use spaces, punctuation, or non-English characters
How do I find my secure site and documents?
Any documents or secure web sites that you have access to are still available on your "My Micron" site.
How do I request a secure document?
Micron offers a number of secure documents. The security status of these documents is denoted by a padlock icon. So, if you navigate to a part that has a secure document, simply click on the document link to begin the process of requesting permission to download that file. Note that if you don’t already have a Micron profile, you will be prompted to create one. From there please follow the account creation and validation steps to gain permission to the document.
The new Web site seems slow, is there something I can do?
Check your browser-- if you’re using an old version like Internet Explorer 6, you might consider upgrading to the current edition, Internet Explorer 8, or the latest Firefox browser.
Why Create a Profile?
A Micron profile is required for:
• Seamless, maximized access to micron.com
• Email alerts based on your product and application interests
• Access to secure product information and technical resources
• Advance notice of new features and tools on micron.com